Low-Loss, High-Permittivity Composites Made from Graphene Nanoribbons

被引:65
作者
Dimiev, Ayrat [2 ]
Lu, Wei [2 ]
Zeller, Kyle [1 ]
Crowgey, Benjamin [1 ]
Kempel, Leo C. [1 ]
Tour, James M. [2 ,3 ,4 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[4] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
关键词
dielectric; permittivity; loss; conductive filler; graphene nanoribbons; ELECTRICAL-CONDUCTIVITY; COMPLEX PERMITTIVITY; CARBON NANOTUBES; SPECTROSCOPY;
D O I
10.1021/am201071h
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new composite material was prepared by incorporation of graphene nanoribbons into a dielectric host matrix. The composite possesses remarkably low loss at reasonably high permittivity values. By varying the content of the conductive filler, one can tune the loss and permittivity to desirable values over a wide range. The obtained data exemplifies how nanoscopic changes in the structure of conductive filler can affect macroscopic properties of composite material.
引用
收藏
页码:4657 / 4661
页数:5
相关论文
共 18 条
[1]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[2]   Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites [J].
Dang, Zhi-Min ;
Wang, Lan ;
Yin, Yi ;
Zhang, Qing ;
Lei, Qing-Qua .
ADVANCED MATERIALS, 2007, 19 (06) :852-+
[3]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[4]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[5]   The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites [J].
Grimes, CA ;
Mungle, C ;
Kouzoudis, D ;
Fang, S ;
Eklund, PC .
CHEMICAL PHYSICS LETTERS, 2000, 319 (5-6) :460-464
[6]   Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes [J].
Grimes, CA ;
Dickey, EC ;
Mungle, C ;
Ong, KG ;
Qian, D .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (08) :4134-4137
[7]   Tunable permittivity of polymer composites through incremental blending of raw and functionalized single-wall carbon nanotubes [J].
Higginbotham, Amanda L. ;
Stephenson, Jason J. ;
Smith, Ramsey J. ;
Killips, Daniel S. ;
Kempel, Leo C. ;
Tour, James M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (48) :17751-17754
[8]   Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor [J].
Kosynkin, Dmitry V. ;
Lu, Wei ;
Sinitskii, Alexander ;
Pera, Gorka ;
Sun, Zhengzong ;
Tour, James M. .
ACS NANO, 2011, 5 (02) :968-974
[9]   X-ray photoelectron spectroscopy, photoelectron energy loss spectroscopy, X-ray excited Auger electron spectroscopy, and time-of-flight- secondary ion mass spectroscopy studies of asphaltenes from Doba-Chad heavy crude hydrovisbreaking [J].
Larachi, F ;
Dehkissia, S ;
Adnot, A ;
Chornet, E .
ENERGY & FUELS, 2004, 18 (06) :1744-1756
[10]  
LAVERGHETTA T, 1991, MICROWAVE MAT FABRIC