Computation of lucky number of planar graphs is NP-hard

被引:12
作者
Ahadi, A. [1 ]
Dehghan, A. [1 ]
Kazemi, M. [1 ]
Mollaahmadi, E. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
Lucky labeling; Computational complexity; Graph coloring;
D O I
10.1016/j.ipl.2011.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lucky labeling of a graph G is a function l : V(G) --> N, such that for every two adjacent vertices v and u of G, Sigma(w similar to v) l(w) not equal Sigma(w similar to u) l(w) (x similar to y means that x is joined to y). A lucky number of G, denoted by eta(G), is the minimum number k such that G has a lucky labeling l : V(G) --> {1, ..., k}. We prove that for a given planar 3-colorable graph G determining whether eta(G) = 2 is NP-complete. Also for every k >= 2, it is NP-complete to decide whether eta(G) = k for a given graph G. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 112
页数:4
相关论文
共 8 条
  • [1] Degree constrained subgraphs
    Addario-Berry, L.
    Dalal, K.
    Reed, B. A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (07) : 1168 - 1174
  • [2] Vertex colouring edge partitions
    Addario-Berry, L
    Aldred, REL
    Dalal, K
    Reed, BA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) : 237 - 244
  • [3] [Anonymous], 2000, INTRO GRAPH THEORY
  • [4] Lucky labelings of graphs
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Zelazny, Wiktor
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (18) : 1078 - 1081
  • [5] Du D.-Z., 2002, Introduction to Computational Complexity
  • [6] Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
  • [7] Edge weights and vertex colours
    Karonski, M
    Luczak, T
    Thomason, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) : 151 - 157
  • [8] 1, 2 Conjecture -: the multiplicative version
    Skowronek-Kaziow, Joanna
    [J]. INFORMATION PROCESSING LETTERS, 2008, 107 (3-4) : 93 - 95