Improved Eigenvalue Bounds for Schrodinger Operators with Slowly Decaying Potentials

被引:6
作者
Cuenin, Jean-Claude [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
关键词
INEQUALITIES; ABSENCE;
D O I
10.1007/s00220-019-03635-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend a result of Davies and Nath (J Comput Appl Math 148(1):1-28, 2002) on the location of eigenvalues of Schrodinger operators with slowly decaying complex-valued potentials to higher dimensions. In this context, we also discuss various examples related to the Laptev and Safronov conjecture (Laptev and Safronov in Commun Math Phys 292(1):29-54, 2009).
引用
收藏
页码:2147 / 2160
页数:14
相关论文
共 25 条
  • [1] Bounds on complex eigenvalues and resonances
    Abramov, AA
    Aslanyan, A
    Davies, EB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01): : 57 - 72
  • [2] [Anonymous], 1976, STUDIES MATH PHYS
  • [3] [Anonymous], 1971, PRINCETON MATH SER
  • [4] [Anonymous], 2013, OPERTOR THEORY ADV A
  • [5] Schrodinger Operator with Non-Zero Accumulation Points of Complex Eigenvalues
    Boegli, Sabine
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (02) : 629 - 639
  • [6] Cuenin J.-C, 2017, ARXIV170906989
  • [7] Eigenvalue bounds for Dirac and fractional Schrodinger operators with complex potentials
    Cuenin, Jean-Claude
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (07) : 2987 - 3018
  • [8] Schrodinger operators with slowly decaying potentials
    Davies, EB
    Nath, J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) : 1 - 28
  • [9] On the discrete spectrum of non-selfadjoint operators
    Demuth, Michael
    Hansmann, Marcel
    Katriel, Guy
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (09) : 2742 - 2759
  • [10] Dyatlov S, 2019, Graduate Studies in Mathematics, V200