A new version of PRT software for sibling groups reconstruction with comments regarding several issues in the sibling reconstruction problem

被引:19
作者
Almudevar, Anthony [1 ]
Anderson, Eric C. [2 ,3 ]
机构
[1] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14627 USA
[2] SW Fisheries Sci Ctr, Fisheries Ecol Div, Santa Cruz, CA USA
[3] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
关键词
pedigree reconstruction; sibling group inference; FULL SIBSHIP RECONSTRUCTION; PEDIGREE RECONSTRUCTION; PARTITION-DISTANCE; PARENTAGE; ASSIGNMENT; PATERNITY; ALGORITHMS; INFERENCE; PROGRAM;
D O I
10.1111/j.1755-0998.2011.03061.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pedigree reconstruction using genotypic markers has become an important tool for the study of natural populations. The nonstandard nature of the underlying statistical problems has led to the necessity of developing specialized statistical and computational methods. In this article, a new version of pedigree reconstruction tools (PRT 2.0) is presented. The software implements algorithms proposed in Almudevar & Field (Journal of Agricultural Biological and Environmental Statistics, 4, 1999, 136) and Almudevar (Biometrics, 57, 2001a, 757) for the reconstruction of single generation sibling groups (SG). A wider range of enumeration algorithms is included, permitting improved computational performance. In particular, an iterative version of the algorithm designed for larger samples is included in a fully automated form. The new version also includes expanded simulation utilities, as well as extensive reporting, including half-sibling compatibility, parental genotype estimates and flagging of potential genotype errors. A number of alternative algorithms are described and demonstrated. A comparative discussion of the underlying methodologies is presented. Although important aspects of this problem remain open, we argue that a number of methodologies including maximum likelihood estimation (COLONY 1.2 and 2.0) and the set cover formulation (KINALYZER) exhibit undesirable properties in the sibling reconstruction problem. There is considerable evidence that large sets of individuals not genetically excluded as siblings can be inferred to be a true sibling group, but it is also true that unrelated individuals may be genetically compatible with a true sibling group by chance. Such individuals may be identified on a statistical basis. PRT 2.0, based on these sound statistical principles, is able to efficiently match or exceed the highest reported accuracy rates, particularly for larger SG. The new version is available at .
引用
收藏
页码:164 / 178
页数:15
相关论文
共 42 条
[1]   A simulated annealing algorithm for maximum likelihood pedigree reconstruction [J].
Almudevar, A .
THEORETICAL POPULATION BIOLOGY, 2003, 63 (02) :63-75
[2]   Most powerful permutation invariant tests for relatedness hypotheses using genotypic data [J].
Almudevar, A .
BIOMETRICS, 2001, 57 (04) :1080-1088
[3]   A bootstrap assessment of variability in pedigree reconstruction based on genetic markers [J].
Almudevar, A .
BIOMETRICS, 2001, 57 (03) :757-763
[4]   Estimation of single-generation sibling relationships based on DNA markers [J].
Almudevar, A ;
Field, C .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 1999, 4 (02) :136-165
[5]   A graphical approach to relatedness inference [J].
Almudevar, Anthony .
THEORETICAL POPULATION BIOLOGY, 2007, 71 (02) :213-229
[6]   A commentary on some recent methods in sibling group reconstruction based on set coverings [J].
Almudevar, Anthony .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (06) :993-1003
[7]   KINALYZER, a computer program for reconstructing sibling groups [J].
Ashley, M. V. ;
Caballero, I. C. ;
Chaovalitwongse, W. ;
Dasgupta, B. ;
Govindan, P. ;
Sheikh, S. I. ;
Berger-Wolf, T. Y. .
MOLECULAR ECOLOGY RESOURCES, 2009, 9 (04) :1127-1131
[8]  
Ashley M. V., 2008, COMPUTATIONAL BIOL N
[9]   Reconstructing sibling relationships in wild populations [J].
Berger-Wolf, Tanya Y. ;
Sheikh, Saad I. ;
DasGupta, Bhaskar ;
Ashley, Mary V. ;
Caballero, Isabel C. ;
Chaovalitwongse, Wanpracha ;
Putrevu, S. Lahari .
BIOINFORMATICS, 2007, 23 (13) :I49-I56
[10]   DNA-based methods for pedigree reconstruction and kinship analysis in natural populations [J].
Blouin, MS .
TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (10) :503-511