FINITELY GENERATED INFINITE SIMPLE GROUPS OF INFINITE SQUARE WIDTH AND VANISHING STABLE COMMUTATOR LENGTH

被引:6
作者
Muranov, Alexey [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
Small cancellations; simple group; stable commutator length; square length; homogeneous quasi-morphism; bounded cohomology; van Kampen diagram; KAC-MOODY GROUPS; DIAGRAMS; SURFACES;
D O I
10.1142/S1793525310000380
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that there exist finitely generated infinite simple groups of infinite commutator width and infinite square width on which there exists no stably unbounded conjugation-invariant norm, and in particular stable commutator length vanishes. Moreover, a recursive presentation of such a group with decidable word and conjugacy problems is constructed.
引用
收藏
页码:341 / 384
页数:44
相关论文
共 29 条
  • [1] [Anonymous], 1991, GROUP THEORY GEOMETR
  • [2] EULER AND MASLOV COCYCLES
    BARGE, J
    GHYS, E
    [J]. MATHEMATISCHE ANNALEN, 1992, 294 (02) : 235 - 265
  • [3] Bavard C., 1991, ENSEIGN MATH, V37, P109
  • [4] BROWN KS, 1994, COHOMOLOGY GROUPS
  • [5] Burago D., 2008, Groups of Diffeomorphisms: In Honor of Shigeyuki Morita on the Occasion of His 60th Birthday, P221
  • [6] Calegari D., 2009, MSJ Memoirs, V20
  • [7] Abstract simplicity of non-affine Kac-Moody groups
    Caprace, PE
    Rémy, B
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (08) : 539 - 544
  • [8] Rank-One Isometries of Buildings and Quasi-Morphisms of Kac-Moody Groups
    Caprace, Pierre-Emmanuel
    Fujiwara, Koji
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 19 (05) : 1296 - 1319
  • [9] ASPHERICAL GROUP PRESENTATIONS
    CHISWELL, IM
    COLLINS, DJ
    HUEBSCHMANN, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (01) : 1 - 36
  • [10] SPHERICAL DIAGRAMS AND IDENTITIES AMONG RELATIONS
    COLLINS, DJ
    HUEBSCHMANN, J
    [J]. MATHEMATISCHE ANNALEN, 1982, 261 (02) : 155 - 183