A stability analysis of fifth-order water wave models

被引:42
作者
Levandosky, SP [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
来源
PHYSICA D | 1999年 / 125卷 / 3-4期
关键词
traveling wave; water wave model; solitary wave;
D O I
10.1016/S0167-2789(98)00245-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of traveling wave solutions to a fifth-order water wave model. By solving a constrained minimization problem we show that "ground state" traveling wave solutions exist. Their stability is shown to be determined by the convexity analysis makes frequent use of the variational properties of the traveling waves. (C)1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:222 / 240
页数:19
相关论文
共 27 条
[1]   SUFFICIENT CONDITIONS FOR STABILITY OF SOLITARY-WAVE SOLUTIONS OF MODEL-EQUATIONS FOR LONG WAVES [J].
ALBERT, JP ;
BONA, JL ;
HENRY, DB .
PHYSICA D, 1987, 24 (1-3) :343-366
[2]  
Amick C. J., 1991, Eur. J. Appl. Math., V3, P97
[3]  
AMICK CJ, 1989, ARCH RATION MECH AN, V105, P1
[5]  
BENNEY DJ, 1977, STUD APPL MATH, V56, P81
[6]   STABILITY THEORY OF SOLITARY WAVES [J].
BONA, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 344 (1638) :363-374
[7]   STABILITY AND INSTABILITY OF SOLITARY WAVES OF KORTEWEG-DEVRIES TYPE [J].
BONA, JL ;
SOUGANIDIS, PE ;
STRAUSS, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1987, 411 (1841) :395-412
[8]   Plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers [J].
Buffoni, B ;
Groves, MD ;
Toland, JF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1707) :575-607
[9]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[10]   A global investigation of solitary-wave solutions to a two-parameter model for water waves [J].
Champneys, AR ;
Groves, MD .
JOURNAL OF FLUID MECHANICS, 1997, 342 :199-229