Robust Tracking-by-Detection using a Detector Confidence Particle Filter

被引:306
|
作者
Breitenstein, Michael D. [1 ]
Reichlin, Fabian [1 ]
Leibe, Bastian [1 ]
Koller-Meier, Esther [1 ]
Van Gool, Luc [1 ]
机构
[1] ETH, Comp Vis Lab, Zurich, Switzerland
来源
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2009年
关键词
MULTIPLE; HUMANS;
D O I
10.1109/ICCV.2009.5459278
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel approach for multi-person tracking-by-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. Thus, generic object category knowledge is complemented by instance-specific information. A main contribution of this paper is the exploration of how these unreliable information sources can be used for multi-person tracking. The resulting algorithm robustly tracks a large number of dynamically moving persons in complex scenes with occlusions, does not rely on background modeling, and operates entirely in 2D (requiring no camera or ground plane calibration). Our Markovian approach relies only on information from the past and is suitable for online applications. We evaluate the performance on a variety of datasets and show that it improves upon state-of-the-art methods.
引用
收藏
页码:1515 / 1522
页数:8
相关论文
共 50 条
  • [1] Object Tracking by Combining Tracking-by-Detection and Marginal Particle Filter
    Maras, Bahri
    Arica, Nafiz
    Ertuzun, Aysin Baytan
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1029 - 1032
  • [2] ROBSTRUCK: IMPROVING OCCLUSION HANDLING OF STRUCTURED TRACKING-BY-DETECTION USING ROBUST KALMAN FILTER
    Bogun, Ivan
    Ribeiro, Eraldo
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3479 - 3483
  • [3] Online Multi-camera Tracking-by-detection Approach with Particle Filter
    Zhang, Jiexin
    Xiong, Huilin
    2015 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, AND SYSTEMS (ICCCS), 2015, : 150 - 153
  • [4] Online Multi-Person Tracking-by-Detection Method Using ACF and Particle Filter
    Kokul, T.
    Ramanan, A.
    Pinidiyaarachchi, U. A. J.
    2015 IEEE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INFORMATION SYSTEMS (ICICIS), 2015, : 529 - 536
  • [5] Robust tracking-by-detection using a selection and completion mechanism
    Ruochen Fan
    Fang-Lue Zhang
    Min Zhang
    Ralph R.Martin
    ComputationalVisualMedia, 2017, 3 (03) : 285 - 294
  • [6] Robust tracking-by-detection using a selection and completion mechanism
    Fan R.
    Zhang F.-L.
    Zhang M.
    Martin R.R.
    Computational Visual Media, 2017, 3 (3) : 285 - 294
  • [7] Tracking-by-detection of multiple persons by a resample-move particle filter
    Zuriarrain, Iker
    Mekonnen, Alhayat Ali
    Lerasle, Frederic
    Arana, Nestor
    MACHINE VISION AND APPLICATIONS, 2013, 24 (08) : 1751 - 1765
  • [8] Cascaded Confidence Filtering for Improved Tracking-by-Detection
    Stalder, Severin
    Grabner, Helmut
    Van Gool, Luc
    COMPUTER VISION-ECCV 2010, PT I, 2010, 6311 : 369 - 382
  • [9] Tracking-by-detection of multiple persons by a resample-move particle filter
    Iker Zuriarrain
    Alhayat Ali Mekonnen
    Frédéric Lerasle
    Nestor Arana
    Machine Vision and Applications, 2013, 24 : 1751 - 1765
  • [10] ROBUST ONLINE FACE TRACKING-BY-DETECTION
    Comaschi, Francesco
    Stuijk, Sander
    Basten, Twan
    Corporaal, Henk
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,