共 44 条
Accuracy and generalization capability of an automatic method for the detection of typical brain hypometabolism in prodromal Alzheimer disease
被引:20
作者:
De Carli, Fabrizio
[1
]
Nobili, Flavio
[2
]
Pagani, Marco
[3
,4
]
Bauckneht, Matteo
[5
,6
]
Massa, Federico
[2
]
Grazzini, Matteo
[2
]
Jonsson, Cathrine
[4
]
Peira, Enrico
[7
]
Morbelli, Silvia
[5
,6
]
Arnaldi, Dario
[2
]
Weiner, Michael W.
[8
,91
]
Aisen, Paul
[9
]
Weiner, Michael
[8
]
Petersen, Ronald
[10
]
Jack, Clifford R., Jr.
[10
]
Jagust, William
[11
,91
]
Trojanowki, John Q.
[12
,37
,92
,93
]
Toga, Arthur W.
[9
,13
]
Beckett, Laurel
[14
]
Saykin, Andrew J.
[15
]
Morris, John
[16
]
Shaw, Leslie M.
[12
,37
,92
]
Khachaturian, Zaven
[17
]
Sorensen, Greg
[18
]
Carrillo, Maria
[19
]
Kuller, Lew
[20
]
Raichle, Marc
[16
]
Paul, Steven
[21
]
Davies, Peter
[22
]
Fillit, Howard
[23
]
Hefti, Franz
[24
]
Holtzman, David
[16
]
Mesulam, M. Marcel
[25
]
Potter, William
[26
]
Snyder, Peter
[27
]
Logovinsky, Veronika
Montine, Tom
[16
,29
]
Jimenez, Gustavo
[13
]
Donohue, Michael
[13
,30
]
Gessert, Devon
[13
]
Harless, Kelly
[13
]
Salazar, Jennifer
[13
]
Cabrera, Yuliana
[13
]
Walter, Sarah
[13
]
Hergesheimer, Lindsey
[13
]
Bernstein, Matthew
[10
]
Fox, Nick
[31
]
Thompson, Paul
[32
]
Schuff, Norbert
[33
]
DeCArli, Charles
[14
]
机构:
[1] CNR, Inst Mol Bioimaging & Physiol, Largo Paolo Daneo 3, I-16132 Genoa, Italy
[2] Univ Genoa, IRCCS Polyclin San Martino IST, Dept Neurosci DINOGMI, Genoa, Italy
[3] CNR, Inst Cognit Sci & Technol, Rome, Italy
[4] Karolinska Univ Hosp, Imaging & Physiol, Med Radiat Phys & Nucl Med, Stockholm, Sweden
[5] Univ Genoa, Dept Hlth Sci DISSAL, Genoa, Italy
[6] Polyclin San Martino Hosp, Nucl Med Unit, Genoa, Italy
[7] Natl Inst Nucl Phys INFN, Genoa, Italy
[8] UC San Francisco, San Francisco, CA USA
[9] Univ Southern Calif, Los Angeles, CA 90089 USA
[10] Mayo Clin, Rochester, MN USA
[11] Univ Calif Berkeley, Berkeley, CA USA
[12] Univ Penn, Philadelphia, PA 19104 USA
[13] USC, Los Angeles, CA USA
[14] Univ Calif Davis, Davis, CA USA
[15] Indiana Univ, Bloomington, IN 47405 USA
[16] Washington Univ, St Louis, MO 63130 USA
[17] Prevent Alzheimers Dis 2020, Rockville, MD USA
[18] Siemens, Munich, Germany
[19] Alzheimers Assoc, Chicago, IL USA
[20] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[21] Cornell Univ, Ithaca, NY 14853 USA
[22] Yeshiva Univ, Albert Einstein Col Med, New York, NY 10033 USA
[23] AD Drug Discovery Fdn, New York, NY USA
[24] Acumen Pharmceut, Livermore, CA USA
[25] Northwestern Univ, Evanston, IL 60208 USA
[26] NIMH, Rockville, MD 20852 USA
[27] Brown Univ, Providence, RI 02912 USA
[28] HMS, BWH, Boston, MA USA
[29] Univ Washington, Seattle, WA 98195 USA
[30] Univ Calif San Diego, La Jolla, CA USA
[31] Univ London, London, England
[32] Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90024 USA
[33] UCSF, MRI, San Francisco, CA USA
[34] Univ Michigan, Ann Arbor, MI 48109 USA
[35] Univ Utah, Salt Lake City, UT 84112 USA
[36] Banner Alzheimers Inst, Phoenix, AZ USA
[37] UPenn Sch Med, Philadelphia, PA USA
[38] UC Irvine, Irvine, CA USA
[39] NIA, Bethesda, MD 20892 USA
[40] Johns Hopkins Univ, Baltimore, MD 21218 USA
[41] Richard Frank Consulting, Sacramento, CA USA
[42] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[43] Univ Calif San Diego, La Jolla, CA 92093 USA
[44] Baylor Coll Med, Houston, TX 77030 USA
[45] Columbia Univ, Med Ctr, New York, NY 10027 USA
[46] Univ Alabama Birmingham, Birmingham, AL USA
[47] Mt Sinai Sch Med, New York, NY USA
[48] Rush Univ, Med Ctr, Chicago, IL 60612 USA
[49] Wien Ctr, Vienna, Austria
[50] NYU, New York, NY 10003 USA
基金:
美国国家卫生研究院;
加拿大健康研究院;
关键词:
Alzheimer disease;
MCI due to AD;
FDG-PET;
Discriminant analysis;
Neuroimage classification;
Classification and prediction;
Neurodegenerative disorders;
Support vector machine;
MILD COGNITIVE IMPAIRMENT;
FDG-PET;
ASSOCIATION WORKGROUPS;
DIAGNOSTIC GUIDELINES;
NATIONAL INSTITUTE;
MCI;
DEMENTIA;
RECOMMENDATIONS;
VALIDATION;
CONFIDENCE;
D O I:
10.1007/s00259-018-4197-7
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
PurposeThe aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing F-18-fluorodeoxyglucose (FDG) PET data.MethodsThe SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric dataset drawn from the Alzheimer's Disease Neuroimaging Initiative. Subjects were included in the study and classified based on a diagnosis confirmed after an adequate follow-up time.ResultsThe accuracy of the discrimination between patients with Alzheimer Disease (AD), in either prodromal or dementia stage, and normal aging subjects was 95.8%, after cross-validation, in the training set. The accuracy of the same model in the testing set was 86.5%. The role of the two datasets was then reversed, and the accuracy was 89.8% in the multicentric training set and 88.0% in the monocentric testing set. The classification rate was also evaluated in different subgroups, including non-converter mild cognitive impairment (MCI) patients, subjects with MCI reverted to normal conditions and subjects with non-confirmed memory concern. The percent of pattern detections increased from 77% in early prodromal AD to 91% in AD dementia, while it was about 10% for healthy controls and non-AD patients.ConclusionsThe present findings show a good level of reproducibility and generalizability of a model for detecting the hypometabolic pattern in AD and confirm the accuracy of FDG-PET in Alzheimer disease.
引用
收藏
页码:334 / 347
页数:14
相关论文