Accuracy and generalization capability of an automatic method for the detection of typical brain hypometabolism in prodromal Alzheimer disease

被引:20
作者
De Carli, Fabrizio [1 ]
Nobili, Flavio [2 ]
Pagani, Marco [3 ,4 ]
Bauckneht, Matteo [5 ,6 ]
Massa, Federico [2 ]
Grazzini, Matteo [2 ]
Jonsson, Cathrine [4 ]
Peira, Enrico [7 ]
Morbelli, Silvia [5 ,6 ]
Arnaldi, Dario [2 ]
Weiner, Michael W. [8 ,91 ]
Aisen, Paul [9 ]
Weiner, Michael [8 ]
Petersen, Ronald [10 ]
Jack, Clifford R., Jr. [10 ]
Jagust, William [11 ,91 ]
Trojanowki, John Q. [12 ,37 ,92 ,93 ]
Toga, Arthur W. [9 ,13 ]
Beckett, Laurel [14 ]
Saykin, Andrew J. [15 ]
Morris, John [16 ]
Shaw, Leslie M. [12 ,37 ,92 ]
Khachaturian, Zaven [17 ]
Sorensen, Greg [18 ]
Carrillo, Maria [19 ]
Kuller, Lew [20 ]
Raichle, Marc [16 ]
Paul, Steven [21 ]
Davies, Peter [22 ]
Fillit, Howard [23 ]
Hefti, Franz [24 ]
Holtzman, David [16 ]
Mesulam, M. Marcel [25 ]
Potter, William [26 ]
Snyder, Peter [27 ]
Logovinsky, Veronika
Montine, Tom [16 ,29 ]
Jimenez, Gustavo [13 ]
Donohue, Michael [13 ,30 ]
Gessert, Devon [13 ]
Harless, Kelly [13 ]
Salazar, Jennifer [13 ]
Cabrera, Yuliana [13 ]
Walter, Sarah [13 ]
Hergesheimer, Lindsey [13 ]
Bernstein, Matthew [10 ]
Fox, Nick [31 ]
Thompson, Paul [32 ]
Schuff, Norbert [33 ]
DeCArli, Charles [14 ]
机构
[1] CNR, Inst Mol Bioimaging & Physiol, Largo Paolo Daneo 3, I-16132 Genoa, Italy
[2] Univ Genoa, IRCCS Polyclin San Martino IST, Dept Neurosci DINOGMI, Genoa, Italy
[3] CNR, Inst Cognit Sci & Technol, Rome, Italy
[4] Karolinska Univ Hosp, Imaging & Physiol, Med Radiat Phys & Nucl Med, Stockholm, Sweden
[5] Univ Genoa, Dept Hlth Sci DISSAL, Genoa, Italy
[6] Polyclin San Martino Hosp, Nucl Med Unit, Genoa, Italy
[7] Natl Inst Nucl Phys INFN, Genoa, Italy
[8] UC San Francisco, San Francisco, CA USA
[9] Univ Southern Calif, Los Angeles, CA 90089 USA
[10] Mayo Clin, Rochester, MN USA
[11] Univ Calif Berkeley, Berkeley, CA USA
[12] Univ Penn, Philadelphia, PA 19104 USA
[13] USC, Los Angeles, CA USA
[14] Univ Calif Davis, Davis, CA USA
[15] Indiana Univ, Bloomington, IN 47405 USA
[16] Washington Univ, St Louis, MO 63130 USA
[17] Prevent Alzheimers Dis 2020, Rockville, MD USA
[18] Siemens, Munich, Germany
[19] Alzheimers Assoc, Chicago, IL USA
[20] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[21] Cornell Univ, Ithaca, NY 14853 USA
[22] Yeshiva Univ, Albert Einstein Col Med, New York, NY 10033 USA
[23] AD Drug Discovery Fdn, New York, NY USA
[24] Acumen Pharmceut, Livermore, CA USA
[25] Northwestern Univ, Evanston, IL 60208 USA
[26] NIMH, Rockville, MD 20852 USA
[27] Brown Univ, Providence, RI 02912 USA
[28] HMS, BWH, Boston, MA USA
[29] Univ Washington, Seattle, WA 98195 USA
[30] Univ Calif San Diego, La Jolla, CA USA
[31] Univ London, London, England
[32] Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90024 USA
[33] UCSF, MRI, San Francisco, CA USA
[34] Univ Michigan, Ann Arbor, MI 48109 USA
[35] Univ Utah, Salt Lake City, UT 84112 USA
[36] Banner Alzheimers Inst, Phoenix, AZ USA
[37] UPenn Sch Med, Philadelphia, PA USA
[38] UC Irvine, Irvine, CA USA
[39] NIA, Bethesda, MD 20892 USA
[40] Johns Hopkins Univ, Baltimore, MD 21218 USA
[41] Richard Frank Consulting, Sacramento, CA USA
[42] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[43] Univ Calif San Diego, La Jolla, CA 92093 USA
[44] Baylor Coll Med, Houston, TX 77030 USA
[45] Columbia Univ, Med Ctr, New York, NY 10027 USA
[46] Univ Alabama Birmingham, Birmingham, AL USA
[47] Mt Sinai Sch Med, New York, NY USA
[48] Rush Univ, Med Ctr, Chicago, IL 60612 USA
[49] Wien Ctr, Vienna, Austria
[50] NYU, New York, NY 10003 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer disease; MCI due to AD; FDG-PET; Discriminant analysis; Neuroimage classification; Classification and prediction; Neurodegenerative disorders; Support vector machine; MILD COGNITIVE IMPAIRMENT; FDG-PET; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; MCI; DEMENTIA; RECOMMENDATIONS; VALIDATION; CONFIDENCE;
D O I
10.1007/s00259-018-4197-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeThe aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing F-18-fluorodeoxyglucose (FDG) PET data.MethodsThe SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric dataset drawn from the Alzheimer's Disease Neuroimaging Initiative. Subjects were included in the study and classified based on a diagnosis confirmed after an adequate follow-up time.ResultsThe accuracy of the discrimination between patients with Alzheimer Disease (AD), in either prodromal or dementia stage, and normal aging subjects was 95.8%, after cross-validation, in the training set. The accuracy of the same model in the testing set was 86.5%. The role of the two datasets was then reversed, and the accuracy was 89.8% in the multicentric training set and 88.0% in the monocentric testing set. The classification rate was also evaluated in different subgroups, including non-converter mild cognitive impairment (MCI) patients, subjects with MCI reverted to normal conditions and subjects with non-confirmed memory concern. The percent of pattern detections increased from 77% in early prodromal AD to 91% in AD dementia, while it was about 10% for healthy controls and non-AD patients.ConclusionsThe present findings show a good level of reproducibility and generalizability of a model for detecting the hypometabolic pattern in AD and confirm the accuracy of FDG-PET in Alzheimer disease.
引用
收藏
页码:334 / 347
页数:14
相关论文
共 44 条
  • [41] Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer's disease:: Normalizing to cerebellar tracer uptake
    Soonawala, D
    Amin, T
    Ebmeier, KP
    Steele, JD
    Dougall, NJ
    Best, J
    Migneco, O
    Nobili, F
    Scheidhauer, K
    [J]. NEUROIMAGE, 2002, 17 (03) : 1193 - 1202
  • [42] Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    Tzourio-Mazoyer, N
    Landeau, B
    Papathanassiou, D
    Crivello, F
    Etard, O
    Delcroix, N
    Mazoyer, B
    Joliot, M
    [J]. NEUROIMAGE, 2002, 15 (01) : 273 - 289
  • [43] EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2
    Varrone, Andrea
    Asenbaum, Susanne
    Vander Borght, Thierry
    Booij, Jan
    Nobili, Flavio
    Nagren, Kjell
    Darcourt, Jacques
    Kapucu, Oezlem L.
    Tatsch, Klaus
    Bartenstein, Peter
    Van Laere, Koen
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2009, 36 (12) : 2103 - 2110
  • [44] Hemispheric asymmetries of hypometabolism associated with semantic memory impairment in Alzheimer's disease: a study using positron emission tomography with fluorodeoxyglucose-F18
    Zahn, R
    Juengling, F
    Bubrowski, P
    Jost, E
    Dykierek, P
    Talazko, J
    Huell, M
    [J]. PSYCHIATRY RESEARCH-NEUROIMAGING, 2004, 132 (02) : 159 - 172