Accuracy and generalization capability of an automatic method for the detection of typical brain hypometabolism in prodromal Alzheimer disease

被引:20
作者
De Carli, Fabrizio [1 ]
Nobili, Flavio [2 ]
Pagani, Marco [3 ,4 ]
Bauckneht, Matteo [5 ,6 ]
Massa, Federico [2 ]
Grazzini, Matteo [2 ]
Jonsson, Cathrine [4 ]
Peira, Enrico [7 ]
Morbelli, Silvia [5 ,6 ]
Arnaldi, Dario [2 ]
Weiner, Michael W. [8 ,91 ]
Aisen, Paul [9 ]
Weiner, Michael [8 ]
Petersen, Ronald [10 ]
Jack, Clifford R., Jr. [10 ]
Jagust, William [11 ,91 ]
Trojanowki, John Q. [12 ,37 ,92 ,93 ]
Toga, Arthur W. [9 ,13 ]
Beckett, Laurel [14 ]
Saykin, Andrew J. [15 ]
Morris, John [16 ]
Shaw, Leslie M. [12 ,37 ,92 ]
Khachaturian, Zaven [17 ]
Sorensen, Greg [18 ]
Carrillo, Maria [19 ]
Kuller, Lew [20 ]
Raichle, Marc [16 ]
Paul, Steven [21 ]
Davies, Peter [22 ]
Fillit, Howard [23 ]
Hefti, Franz [24 ]
Holtzman, David [16 ]
Mesulam, M. Marcel [25 ]
Potter, William [26 ]
Snyder, Peter [27 ]
Logovinsky, Veronika
Montine, Tom [16 ,29 ]
Jimenez, Gustavo [13 ]
Donohue, Michael [13 ,30 ]
Gessert, Devon [13 ]
Harless, Kelly [13 ]
Salazar, Jennifer [13 ]
Cabrera, Yuliana [13 ]
Walter, Sarah [13 ]
Hergesheimer, Lindsey [13 ]
Bernstein, Matthew [10 ]
Fox, Nick [31 ]
Thompson, Paul [32 ]
Schuff, Norbert [33 ]
DeCArli, Charles [14 ]
机构
[1] CNR, Inst Mol Bioimaging & Physiol, Largo Paolo Daneo 3, I-16132 Genoa, Italy
[2] Univ Genoa, IRCCS Polyclin San Martino IST, Dept Neurosci DINOGMI, Genoa, Italy
[3] CNR, Inst Cognit Sci & Technol, Rome, Italy
[4] Karolinska Univ Hosp, Imaging & Physiol, Med Radiat Phys & Nucl Med, Stockholm, Sweden
[5] Univ Genoa, Dept Hlth Sci DISSAL, Genoa, Italy
[6] Polyclin San Martino Hosp, Nucl Med Unit, Genoa, Italy
[7] Natl Inst Nucl Phys INFN, Genoa, Italy
[8] UC San Francisco, San Francisco, CA USA
[9] Univ Southern Calif, Los Angeles, CA 90089 USA
[10] Mayo Clin, Rochester, MN USA
[11] Univ Calif Berkeley, Berkeley, CA USA
[12] Univ Penn, Philadelphia, PA 19104 USA
[13] USC, Los Angeles, CA USA
[14] Univ Calif Davis, Davis, CA USA
[15] Indiana Univ, Bloomington, IN 47405 USA
[16] Washington Univ, St Louis, MO 63130 USA
[17] Prevent Alzheimers Dis 2020, Rockville, MD USA
[18] Siemens, Munich, Germany
[19] Alzheimers Assoc, Chicago, IL USA
[20] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[21] Cornell Univ, Ithaca, NY 14853 USA
[22] Yeshiva Univ, Albert Einstein Col Med, New York, NY 10033 USA
[23] AD Drug Discovery Fdn, New York, NY USA
[24] Acumen Pharmceut, Livermore, CA USA
[25] Northwestern Univ, Evanston, IL 60208 USA
[26] NIMH, Rockville, MD 20852 USA
[27] Brown Univ, Providence, RI 02912 USA
[28] HMS, BWH, Boston, MA USA
[29] Univ Washington, Seattle, WA 98195 USA
[30] Univ Calif San Diego, La Jolla, CA USA
[31] Univ London, London, England
[32] Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90024 USA
[33] UCSF, MRI, San Francisco, CA USA
[34] Univ Michigan, Ann Arbor, MI 48109 USA
[35] Univ Utah, Salt Lake City, UT 84112 USA
[36] Banner Alzheimers Inst, Phoenix, AZ USA
[37] UPenn Sch Med, Philadelphia, PA USA
[38] UC Irvine, Irvine, CA USA
[39] NIA, Bethesda, MD 20892 USA
[40] Johns Hopkins Univ, Baltimore, MD 21218 USA
[41] Richard Frank Consulting, Sacramento, CA USA
[42] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[43] Univ Calif San Diego, La Jolla, CA 92093 USA
[44] Baylor Coll Med, Houston, TX 77030 USA
[45] Columbia Univ, Med Ctr, New York, NY 10027 USA
[46] Univ Alabama Birmingham, Birmingham, AL USA
[47] Mt Sinai Sch Med, New York, NY USA
[48] Rush Univ, Med Ctr, Chicago, IL 60612 USA
[49] Wien Ctr, Vienna, Austria
[50] NYU, New York, NY 10003 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer disease; MCI due to AD; FDG-PET; Discriminant analysis; Neuroimage classification; Classification and prediction; Neurodegenerative disorders; Support vector machine; MILD COGNITIVE IMPAIRMENT; FDG-PET; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; MCI; DEMENTIA; RECOMMENDATIONS; VALIDATION; CONFIDENCE;
D O I
10.1007/s00259-018-4197-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeThe aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing F-18-fluorodeoxyglucose (FDG) PET data.MethodsThe SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric dataset drawn from the Alzheimer's Disease Neuroimaging Initiative. Subjects were included in the study and classified based on a diagnosis confirmed after an adequate follow-up time.ResultsThe accuracy of the discrimination between patients with Alzheimer Disease (AD), in either prodromal or dementia stage, and normal aging subjects was 95.8%, after cross-validation, in the training set. The accuracy of the same model in the testing set was 86.5%. The role of the two datasets was then reversed, and the accuracy was 89.8% in the multicentric training set and 88.0% in the monocentric testing set. The classification rate was also evaluated in different subgroups, including non-converter mild cognitive impairment (MCI) patients, subjects with MCI reverted to normal conditions and subjects with non-confirmed memory concern. The percent of pattern detections increased from 77% in early prodromal AD to 91% in AD dementia, while it was about 10% for healthy controls and non-AD patients.ConclusionsThe present findings show a good level of reproducibility and generalizability of a model for detecting the hypometabolic pattern in AD and confirm the accuracy of FDG-PET in Alzheimer disease.
引用
收藏
页码:334 / 347
页数:14
相关论文
共 44 条
  • [1] The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Albert, Marilyn S.
    DeKosky, Steven T.
    Dickson, Dennis
    Dubois, Bruno
    Feldman, Howard H.
    Fox, Nick C.
    Gamst, Anthony
    Holtzman, David M.
    Jagust, William J.
    Petersen, Ronald C.
    Snyder, Peter J.
    Carrillo, Maria C.
    Thies, Bill
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 270 - 279
  • [2] Functional neuroimaging and clinical features of drug naive patients with de novo Parkinson's disease and probable RBD
    Arnaldi, Dario
    Morbelli, Silvia
    Brugnolo, Andrea
    Girtler, Nicola
    Picco, Agnese
    Ferrara, Michela
    Accardo, Jennifer
    Buschiazzo, Ambra
    de Carli, Fabrizio
    Pagani, Marco
    Nobili, Flavio
    [J]. PARKINSONISM & RELATED DISORDERS, 2016, 29 : 47 - 53
  • [3] Metabolic correlates of reserve and resilience in MCI due to Alzheimer's Disease (AD)
    Bauckneht, Matteo
    Chincarini, Andrea
    Piva, Roberta
    Arnaldi, Dario
    Girtler, Nicola
    Massa, Federico
    Pardini, Matteo
    Grazzini, Matteo
    Efeturk, Hulya
    Pagani, Marco
    Sambuceti, Gianmario
    Nobili, Flavio
    Morbelli, Silvia
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2018, 10
  • [4] Patterns of regional cerebellar atrophy in genetic frontotemporal dementia
    Bocchetta, Martina
    Cardoso, M. Jorge
    Cash, David M.
    Ourselin, Sebastien
    Warren, Jason D.
    Rohrer, Jonathan D.
    [J]. NEUROIMAGE-CLINICAL, 2016, 11 : 287 - 290
  • [5] ALZHEIMERS-DISEASE - AMYLOID PLAQUES IN THE CEREBELLUM
    BRAAK, H
    BRAAK, E
    BOHL, J
    LANG, W
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 1989, 93 (2-3) : 277 - 287
  • [6] Interval estimation for a binomial proportion - Comment - Rejoinder
    Brown, LD
    Cai, TT
    DasGupta, A
    Agresti, A
    Coull, BA
    Casella, G
    Corcoran, C
    Mehta, C
    Ghosh, M
    Santner, TJ
    Brown, LD
    Cai, TT
    DasGupta, A
    [J]. STATISTICAL SCIENCE, 2001, 16 (02) : 101 - 133
  • [7] Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages
    Cabral, Carlos
    Morgado, Pedro M.
    Costa, Durval Campos
    Silveira, Margarida
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 58 : 101 - 109
  • [8] FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort
    Caminiti, Silvia Paola
    Ballarini, Tommaso
    Sala, Arianna
    Cerami, Chiara
    Presotto, Luca
    Santangelo, Roberto
    Fallanca, Federico
    Vanoli, Emilia Giovanna
    Gianolli, Luigi
    Iannaccone, Sandro
    Magnani, Giuseppe
    Perani, Daniela
    [J]. NEUROIMAGE-CLINICAL, 2018, 18 : 167 - 177
  • [9] Summary Metrics to Assess Alzheimer Disease Related Hypometabolic Pattern with 18F-FDG PET: Head-to-Head Comparison
    Caroli, Anna
    Prestia, Annapaola
    Chen, Kewei
    Ayutyanont, Napatkamon
    Landau, Susan M.
    Madison, Cindee M.
    Haense, Cathleen
    Herholz, Karl
    Nobili, Flavio
    Reiman, Eric M.
    Jagust, William J.
    Frisoni, Giovanni B.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (04) : 592 - 600
  • [10] Cerebellar Amyloid-β Plaques: How Frequent Are They, and Do They Influence 18F-Florbetaben SUV Ratios?
    Catafau, Ana M.
    Bullich, Santiago
    Seibyl, John P.
    Barthel, Henryk
    Ghetti, Bernardino
    Leverenz, James
    Ironside, James W.
    Schulz-Schaeffer, Walter J.
    Hoffmann, Anja
    Sabri, Osama
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (11) : 1740 - 1745