共 50 条
On the depth of binomial edge ideals of graphs
被引:5
作者:
Malayeri, M. Rouzbahani
[1
]
Madani, S. Saeedi
[1
,2
]
Kiani, D.
[1
]
机构:
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran Polytech, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词:
Binomial edge ideals;
Depth;
Diameter of a graph;
Hochster-type formula;
Meet-contractible;
REGULARITY;
D O I:
10.1007/s10801-021-01072-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a graph on the vertex set [n] and J(G) the associated binomial edge ideal in the polynomial ring S=K[x(1), ..., x(n),y(1), ..., y(n)]. In this paper, we investigate the depth of binomial edge ideals. More precisely, we first establish a combinatorial lower bound for the depth of S/J(G) based on some graphical invariants of G. Next, we combinatorially characterize all binomial edge ideals J(G) with depthS/J(G)=5. To achieve this goal, we associate a new poset M-G with the binomial edge ideal of G and then elaborate some topological properties of certain subposets of M-G in order to compute some local cohomology modules of S/J(G).
引用
收藏
页码:827 / 846
页数:20
相关论文
共 50 条