On the depth of binomial edge ideals of graphs

被引:5
作者
Malayeri, M. Rouzbahani [1 ]
Madani, S. Saeedi [1 ,2 ]
Kiani, D. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran Polytech, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Binomial edge ideals; Depth; Diameter of a graph; Hochster-type formula; Meet-contractible; REGULARITY;
D O I
10.1007/s10801-021-01072-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on the vertex set [n] and J(G) the associated binomial edge ideal in the polynomial ring S=K[x(1), ..., x(n),y(1), ..., y(n)]. In this paper, we investigate the depth of binomial edge ideals. More precisely, we first establish a combinatorial lower bound for the depth of S/J(G) based on some graphical invariants of G. Next, we combinatorially characterize all binomial edge ideals J(G) with depthS/J(G)=5. To achieve this goal, we associate a new poset M-G with the binomial edge ideal of G and then elaborate some topological properties of certain subposets of M-G in order to compute some local cohomology modules of S/J(G).
引用
收藏
页码:827 / 846
页数:20
相关论文
共 50 条
[21]   Regularity of binomial edge ideals of certain block graphs [J].
A V Jayanthan ;
N Narayanan ;
B V Raghavendra Rao .
Proceedings - Mathematical Sciences, 2019, 129
[22]   Cohen-Macaulay property of binomial edge ideals with girth of graphs [J].
Saha, Kamalesh ;
Sengupta, Indranath .
JOURNAL OF ALGEBRA, 2024, 658 :533-555
[23]   On the v-number of binomial edge ideals of some classes of graphs [J].
Dey, Deblina ;
Jayanthan, A. V. ;
Saha, Kamalesh .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2025, 35 (01) :119-143
[24]   Binomial edge ideals of trees [J].
Sharifan, Leila .
COMMUNICATIONS IN ALGEBRA, 2025,
[25]   Lovasz-Saks-Schrijver ideals and parity binomial edge ideals of graphs [J].
Kumar, Arvind .
EUROPEAN JOURNAL OF COMBINATORICS, 2021, 93
[26]   On the regularity of binomial edge ideals [J].
Ene, Viviana ;
Zarojanu, Andrei .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) :19-24
[27]   Licci binomial edge ideals [J].
Ene, Viviana ;
Rinaldo, Giancarlo ;
Terai, Naoki .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
[28]   ON THE DEPTH OF SYMBOLIC POWERS OF EDGE IDEALS OF GRAPHS [J].
Fakhari, S. A. S. .
NAGOYA MATHEMATICAL JOURNAL, 2022, 245 :28-40
[29]   Sequentially Cohen–Macaulay binomial edge ideals of closed graphs [J].
Viviana Ene ;
Giancarlo Rinaldo ;
Naoki Terai .
Research in the Mathematical Sciences, 2022, 9
[30]   Algebraic properties of binomial edge ideals of Levi graphs associated with curve arrangements [J].
Karmakar, Rupam ;
Sarkar, Rajib ;
Subramaniam, Aditya .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (09)