On the depth of binomial edge ideals of graphs

被引:4
作者
Malayeri, M. Rouzbahani [1 ]
Madani, S. Saeedi [1 ,2 ]
Kiani, D. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran Polytech, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Binomial edge ideals; Depth; Diameter of a graph; Hochster-type formula; Meet-contractible; REGULARITY;
D O I
10.1007/s10801-021-01072-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on the vertex set [n] and J(G) the associated binomial edge ideal in the polynomial ring S=K[x(1), ..., x(n),y(1), ..., y(n)]. In this paper, we investigate the depth of binomial edge ideals. More precisely, we first establish a combinatorial lower bound for the depth of S/J(G) based on some graphical invariants of G. Next, we combinatorially characterize all binomial edge ideals J(G) with depthS/J(G)=5. To achieve this goal, we associate a new poset M-G with the binomial edge ideal of G and then elaborate some topological properties of certain subposets of M-G in order to compute some local cohomology modules of S/J(G).
引用
收藏
页码:827 / 846
页数:20
相关论文
共 50 条
  • [21] Regularity of binomial edge ideals of certain block graphs
    A V Jayanthan
    N Narayanan
    B V Raghavendra Rao
    Proceedings - Mathematical Sciences, 2019, 129
  • [22] On the v-number of binomial edge ideals of some classes of graphs
    Dey, Deblina
    Jayanthan, A. V.
    Saha, Kamalesh
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2025, 35 (01) : 119 - 143
  • [23] Cohen-Macaulay property of binomial edge ideals with girth of graphs
    Saha, Kamalesh
    Sengupta, Indranath
    JOURNAL OF ALGEBRA, 2024, 658 : 533 - 555
  • [24] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [25] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [26] Lovasz-Saks-Schrijver ideals and parity binomial edge ideals of graphs
    Kumar, Arvind
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 93
  • [27] ON THE DEPTH OF SYMBOLIC POWERS OF EDGE IDEALS OF GRAPHS
    Fakhari, S. A. S.
    NAGOYA MATHEMATICAL JOURNAL, 2022, 245 : 28 - 40
  • [28] Sequentially Cohen–Macaulay binomial edge ideals of closed graphs
    Viviana Ene
    Giancarlo Rinaldo
    Naoki Terai
    Research in the Mathematical Sciences, 2022, 9
  • [29] Algebraic properties of binomial edge ideals of Levi graphs associated with curve arrangements
    Karmakar, Rupam
    Sarkar, Rajib
    Subramaniam, Aditya
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (09)
  • [30] Krull dimension and regularity of binomial edge ideals of block graphs
    Mascia, Carla
    Rinaldo, Giancarlo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (07)