Chemical reactivity of hot-pressed Si3N4-ZrB2 ceramics at 1500-1700°C

被引:26
作者
Guo, Wei-Ming [1 ]
Wu, Li-Xiang [1 ]
Ma, Ti [1 ]
Gu, Shang-Xian [1 ]
You, Yang [1 ]
Lin, Hua-Tay [1 ]
Wu, Shang-Hua [1 ]
Zhang, Guo-Jun [2 ]
机构
[1] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Si3N4-ZrB2; ceramics; Hot pressing; Chemical reactivity; Thermodynamic analysis; Microstructure; SILICON-NITRIDE; MECHANICAL-PROPERTIES; ELECTRICAL-CONDUCTIVITY; COMPOSITES; MICROSTRUCTURE; TIB2/SI3N4; ZIRCONIUM;
D O I
10.1016/j.jeurceramsoc.2015.04.031
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Chemical reactivity of hot-pressed Si3N4-ZrB2 ceramics at 1500-1700 degrees C under N-2 and Ar atmosphere is investigated by X-ray diffraction, thermodynamic calculation, and phase diagram. Results show that there are chemical reactions in Si3N4-ZrB2 ceramics. The chemical reactions accelerate the decomposition and phase transformation of Si3N4. The reaction products include ZrN, BN, ZrSi2, SIC or Si, which strongly depend on the atmosphere or temperature. The source of N-2 for ZrN and BN products is both atmosphere and decomposition of Si3N4 at 1600 degrees C or above, whereas that is only atmosphere at 1500 degrees C. There is no reaction in Si3N4-ZrB2 ceramics at 1500 degrees C under Ar. The MgO-Lu2O3 sintering adds lead to the significant increase of relative density of Si3N4-ZrB2 from 48% to 94% at 1500 degrees C in Ar. Therefore, it is possible that dense Si3N4-ZrB2 ceramics with no reaction could be achieved at 1500 degrees C or below in Ar. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2973 / 2979
页数:7
相关论文
共 21 条
[1]  
Brukl CE, 1966, AFMLTR652
[2]   Refractory diborides of zirconium and hafnium [J].
Fahrenholtz, William G. ;
Hilmas, Gregory E. ;
Talmy, Inna G. ;
Zaykoski, James A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (05) :1347-1364
[3]  
Gao L, 2004, J EUR CERAM SOC, V24, P381, DOI 10.1016/S0955-(03)00218-8
[4]   High-strength zirconium diboride-based ceramic composites consolidated by low-temperature hot pressing [J].
Guo, Shuqi ;
Kagawa, Yutaka .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2012, 13 (04)
[5]   Preparation of rod-like β-si3N4 seeds with tailored morphology [J].
Guo, Wei-Ming ;
Xiong, Ming ;
You, Yang ;
Wu, Shang-Hua ;
Lin, Hua-Tay .
MATERIALS LETTERS, 2014, 132 :365-368
[6]   On the fabrication of ZrCxNy from ZrO2 via two-step carbothermic reduction-nitridation [J].
Harrison, R. ;
Rapaud, O. ;
Pradeilles, N. ;
Maitre, A. ;
Lee, W. E. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1413-1421
[7]   INVESTIGATION OF SILICON-NITRIDE COMPOSITES TOUGHENED WITH PRENITRIDED TIB2 [J].
HUANG, JL ;
CHEN, SY .
CERAMICS INTERNATIONAL, 1995, 21 (02) :77-83
[8]   MICROSTRUCTURE, CHEMICAL ASPECTS, AND MECHANICAL-PROPERTIES OF TIB2/SI3N4 AND TIN/SI3N4 COMPOSITES [J].
HUANG, JL ;
CHEN, SY ;
LEE, MT .
JOURNAL OF MATERIALS RESEARCH, 1994, 9 (09) :2349-2354
[9]   Electrically conductive and wear resistant Si3N4-based composites with TiC0.5N0.5 particles for electrical discharge machining [J].
Jiang, DT ;
Vleugels, J ;
Van der Biest, O ;
Liu, WD ;
Verheyen, R ;
Lauwers, B .
FUNCTIONALLY GRADED MATERIALS VIII, 2005, 492-493 :27-32
[10]   Production and EDM of Si3N4-TiB2 ceramic composites [J].
Jones, AH ;
Trueman, C ;
Dobedoe, RS ;
Huddleston, J ;
Lewis, MH .
BRITISH CERAMIC TRANSACTIONS, 2001, 100 (02) :49-54