BACKGROUND MODELING THROUGH DICTIONARY LEARNING

被引:0
作者
Stagliano, Alessandra [1 ]
Noceti, Nicoletta [1 ]
Verri, Alessandro [1 ]
Odone, Francesca [1 ]
机构
[1] Univ Genoa, DIBRIS, I-16146 Genoa, Italy
来源
2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013) | 2013年
关键词
background modeling; dictionary learning; sparse coding;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this work we build a model of the background based on dictionary learning. The image is divided into patches of equal size and a background model is obtained as a sparse linear combination of patch prototypes learnt from the image stream and updated when necessary to take into account stable variations. By enforcing sparsity, the obtained reconstruction can be computed and maintained effectively. The proposed method is stable with respect to illumination changes, correctly incorporates stable background changes in the model, and cancels out moving objects. Experiments on benchmark data indicate that the proposed method reaches very good pixel-wise performances even if relatively large patches are used.
引用
收藏
页码:2524 / 2528
页数:5
相关论文
共 50 条
  • [31] Structured dictionary learning of rating migration matrices for credit risk modeling
    Allouche, Michael
    Gobet, Emmanuel
    Lage, Clara
    Mangin, Edwin
    COMPUTATIONAL STATISTICS, 2024, 39 (06) : 3431 - 3456
  • [32] Dictionary Learning for Dark Image Enhancement
    Yoon, Jaesik
    Seo, Yuna
    Kang, Jungyu
    Yoo, Chang D.
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 94 - 97
  • [33] Computationally Efficient Dynamic Thermal Modeling Based on Dictionary Learning Reconstruction
    Zhang, Xinyue
    Zhang, Yi
    Zhou, Dao
    Wu, Xiaohua
    Wang, Huai
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (12) : 15152 - 15156
  • [34] Document Summarization Using Dictionary Learning
    Menon, Remya R. K.
    Aswathy, N.
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 645 - 650
  • [35] Background Modeling Through Statistical Edge-Segment Distributions
    Rivera, Adin Ramirez
    Murshed, Mahbub
    Kim, Jaemyun
    Chae, Oksam
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (08) : 1375 - 1387
  • [36] Dynamic background modeling using deep learning autoencoder network
    Jeffin Gracewell
    Mala John
    Multimedia Tools and Applications, 2020, 79 : 4639 - 4659
  • [37] ON THE SAMPLE COMPLEXITY OF SPARSE DICTIONARY LEARNING
    Seibert, M.
    Kleinsteuber, M.
    Gribonval, R.
    Jenatton, R.
    Bach, F.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 244 - 247
  • [38] Dynamic background modeling using deep learning autoencoder network
    Gracewell, Jeffin
    John, Mala
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (7-8) : 4639 - 4659
  • [39] Background modeling by subspace learning on spatio-temporal patches
    Zhao, Youdong
    Gong, Haifeng
    Jia, Yunde
    Zhu, Song-Chun
    PATTERN RECOGNITION LETTERS, 2012, 33 (09) : 1134 - 1147
  • [40] Aiding Dictionary Learning Through Multi-Parametric Sparse Representation
    Stoican, Florin
    Irofti, Paul
    ALGORITHMS, 2019, 12 (07)