MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction

被引:203
|
作者
Wang, Xian [1 ]
Ma, Zuju [2 ]
Chai, Lulu [1 ]
Xu, Leqiong [1 ]
Zhu, Ziyi [1 ]
Hu, Yue [1 ]
Qian, Jinjie [1 ]
Huang, Shaoming [1 ]
机构
[1] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325000, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
POROUS CARBON; COBALT NANOPARTICLES; ELECTROCATALYSTS; CATALYSTS; FE; PERFORMANCE; DEPOSITION; NANOSHEETS; OXIDATION; REDUCTION;
D O I
10.1016/j.carbon.2018.10.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Growing demand for clean and renewable energy resources has sparked intensive research on the development of an effective strategy to prepare non-noble metal electrocatalysts for oxygen evolution reaction (OER). Herein, we report a new type of N-doped carbon coated CoP particle/carbon nanotube composite (CNT-NC-CoP) has been synthesized by in situ nucleation and growth of ZIF-67 nanoparticles onto carbon nanotubes, which subsequently is treated with carbonization and phosphorization. Unique hierarchical structure endows as-obtained CNT-NC-CoP with high specific surface area, abundant exposed active sites, quick ion diffusion path, and good electrical conductivity, thus exhibiting the highest electrocatalytic capability with the low overpotential of 251 mV at the current density of 10 mA cm(-2) and remaining long-term durability (overlapping LSV curve after 10 h). Besides, density functional theory (DFT) calculations reveal that CoOOH/graphene charged surfaces are more effective for facilitating intermediates adsorption and improving the corresponding catalytic activity. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:643 / 651
页数:9
相关论文
共 50 条
  • [1] N-doped carbon nanotube/particle composite as highly efficient electrocatalyst towards oxygen reduction reaction
    Lei, Yu
    Tang, Yibo
    Li, Guijun
    Chen, Changguo
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 157
  • [2] MOF-on-MOF-derived hollow FeNi3/N-doped carbon nanorods for efficient oxygen evolution
    Chen, Dandan
    Ji, Xiangli
    Zhou, Xuemei
    Sun, Qiuhong
    Xu, Shaojie
    Mao, Lujiao
    Guo, Zeyi
    Guan, Jia
    Li, Ting-Ting
    Qian, Jinjie
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [3] CoP/N-Doped Carbon Nanowire Derived from Co-Based Coordination Polymer as Efficient Electrocatalyst toward Oxygen Evolution Reaction
    Chen, Liang
    Xu, Guan Cheng
    Xu, Gui
    Zhang, Li
    ENERGY TECHNOLOGY, 2020, 8 (03)
  • [4] Composite Nanoarchitectonics of Co3O4 Nanopolyhedrons with N-Doped Carbon and Carbon Nanotubes for Alkaline Oxygen Evolution Reaction
    Yang, Haidong
    Liu, Nuo
    Chang, Shan
    Zhao, Yuee
    Liu, Yang
    CATALYSIS LETTERS, 2024, 154 (07) : 3999 - 4008
  • [5] 3D hierarchical MOF-derived CoP@N-doped carbon composite foam for efficient hydrogen evolution reaction
    Wang, Yanzhong
    Li, Sha
    Chen, You
    Shi, Xiaofeng
    Wang, Chao
    Guo, Li
    APPLIED SURFACE SCIENCE, 2020, 505
  • [6] A Microribbon Hybrid Structure of CoOx-MoC Encapsulated in N-Doped Carbon Nanowire Derived from MOF as Efficient Oxygen Evolution Electrocatalysts
    Huang, Tan
    Chen, Yu
    Lee, Jong-Min
    SMALL, 2017, 13 (48)
  • [7] Fe, Co, N-doped composite as an efficient catalyst for oxygen reduction and oxygen evolution reaction
    Zhang, Junyuan
    Chen, Jingjing
    Jing, Yulu
    Xu, Xiaolong
    Liu, Changyu
    Jia, Jianbo
    MATERIALS TODAY CHEMISTRY, 2025, 44
  • [8] All carbon hybrid N-doped carbon dots/carbon nanotube structures as an efficient catalyst for the oxygen reduction reaction
    Nguyen, Anh Thi Nguyet
    Shim, Jun Ho
    RSC ADVANCES, 2021, 11 (21) : 12520 - 12530
  • [9] ZIF-derived Co nanoparticle/N-doped CNTs composites embedded in N-doped carbon substrate as efficient electrocatalyst for hydrogen and oxygen evolution
    Li, Hongjie
    He, Yi
    He, Teng
    Yan, Siming
    Ma, Xiaoyu
    Chen, Jingyu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (24) : 21388 - 21397
  • [10] Ruthenium@N-doped graphite carbon derived from carbon foam for efficient hydrogen evolution reaction
    Song, Qian
    Qiao, Xuezhi
    Liu, Lizhi
    Xue, Zhenjie
    Huang, Chuanhui
    Wang, Tie
    CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 965 - 968