Electronic properties of bilayer AA-stacked zigzag nanographene ribbons

被引:2
作者
Chang, S. L. [1 ]
Tsai, C. H. [1 ]
Su, W. S. [1 ]
Chen, S. C. [1 ]
Lin, M. F. [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
关键词
Electronic properties; Bilayer AA-stacked zigzag nanographene ribbons; Interlayer interactions; Spin-spin interactions; GRAPHENE NANORIBBONS; OPTICAL-PROPERTIES; GRAPHITE; STATE; FIELD; EDGE; FILMS;
D O I
10.1016/j.diamond.2011.01.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
First-principles calculations within the generalized gradient approximation are employed to calculate the electronic properties of the bilayer AA-stacked zigzag nanographene ribbon. The AFM-AFM configuration (antiferromagnetic and antiferromagnetic configurations for the intralayer and interlayer spin arrangements, respectively) is predicted to be the most stable system. The interlayer interactions alter the band structure such as the modulation of energy dispersions, the generation of new band-edge states, and the state degeneracy. The energy gap is inversely proportional to the ribbon width. As compared with the monolayer zigzag nanographene ribbon, the density of states exhibits more asymmetric peaks, and some peaks at low energy are enhanced due to the state degeneracy. These predicted results can be identified by scanning tunneling spectroscopy (STS) or the measurements of optical spectra. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 50 条
[31]   Electrically tunable plasma excitations in AA-stacked multilayer graphene [J].
Lin, Ming-Fa ;
Chuang, Ying-Chih ;
Wu, Jhao-Ying .
PHYSICAL REVIEW B, 2012, 86 (12)
[32]   Tuning Charge and Spin Excitations in Zigzag Edge Nanographene Ribbons [J].
Dutta, Sudipta ;
Wakabayashi, Katsunori .
SCIENTIFIC REPORTS, 2012, 2
[33]   Applied electric and magnetic field effects on the bandgap formation and antiferromagnetic ordering in AA-stacked Bilayer Graphene [J].
Apinyan, V. ;
Kopec, T. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2025, 171
[34]   Adsorption properties of HCN, NO, and NH3 on transition metal-doped AA-stacked bilayer graphene: first principle study [J].
Zhu, Pengcheng ;
Zhu, Yongliang ;
Yu, Weiyao ;
Zhao, Jiaming .
MOLECULAR PHYSICS, 2025, 123 (04)
[35]   Exact Landau spectrum and wave functions of biased AA-stacked multilayer graphene [J].
Chang, Cheng-Peng .
CARBON, 2013, 61 :209-215
[36]   Multiple Dirac particles in AA-stacked graphite and multilayers of graphene [J].
Lobato, I. ;
Partoens, B. .
PHYSICAL REVIEW B, 2011, 83 (16)
[37]   Antiferromagnetic states and phase separation in doped AA-stacked graphene bilayers [J].
Sboychakov, A. O. ;
Rozhkov, A. V. ;
Rakhmanov, A. L. ;
Nori, Franco .
PHYSICAL REVIEW B, 2013, 88 (04)
[38]   Tuning electronic properties of bilayer Bernal graphene nanoribbon by magnetic modulation [J].
Li, T. S. ;
Hsieh, C. T. ;
Chang, S. C. .
SOLID STATE COMMUNICATIONS, 2014, 200 :56-60
[39]   Magnon energies and thermoelectric properties of AB-stacked bilayer zigzag graphene nanoribbons [J].
Prayitno, Teguh Budi .
PHYSICA SCRIPTA, 2025, 100 (07)
[40]   Electronic structure and optical characteristics of AA stacked bilayer graphene: A first principles calculations [J].
Laref, A. ;
Alsagri, M. ;
Alay-e-Abbas, Syed Muhammad ;
Laref, S. ;
Huang, H. M. ;
Xiong, Y. C. ;
Yang, J. T. ;
Khandy, Shakeel Ahmad ;
Rai, Dibya Prakash ;
Varshney, Dinesh ;
Wu, Xiaozhi .
OPTIK, 2020, 206