Electronic properties of bilayer AA-stacked zigzag nanographene ribbons

被引:2
作者
Chang, S. L. [1 ]
Tsai, C. H. [1 ]
Su, W. S. [1 ]
Chen, S. C. [1 ]
Lin, M. F. [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
关键词
Electronic properties; Bilayer AA-stacked zigzag nanographene ribbons; Interlayer interactions; Spin-spin interactions; GRAPHENE NANORIBBONS; OPTICAL-PROPERTIES; GRAPHITE; STATE; FIELD; EDGE; FILMS;
D O I
10.1016/j.diamond.2011.01.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
First-principles calculations within the generalized gradient approximation are employed to calculate the electronic properties of the bilayer AA-stacked zigzag nanographene ribbon. The AFM-AFM configuration (antiferromagnetic and antiferromagnetic configurations for the intralayer and interlayer spin arrangements, respectively) is predicted to be the most stable system. The interlayer interactions alter the band structure such as the modulation of energy dispersions, the generation of new band-edge states, and the state degeneracy. The energy gap is inversely proportional to the ribbon width. As compared with the monolayer zigzag nanographene ribbon, the density of states exhibits more asymmetric peaks, and some peaks at low energy are enhanced due to the state degeneracy. These predicted results can be identified by scanning tunneling spectroscopy (STS) or the measurements of optical spectra. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 50 条
[21]   Optical transitions between Landau levels: AA-stacked bilayer graphene [J].
Ho, Yen-Hung ;
Wu, Jhao-Ying ;
Chen, Rang-Bin ;
Chiu, Yu-Huang ;
Lin, Ming-Fa .
APPLIED PHYSICS LETTERS, 2010, 97 (10)
[22]   Tuning of electronic properties of nanographene ribbons by a spatially modulated electric field [J].
Chen, S. C. ;
Chang, C. P. ;
Lee, C. H. ;
Lin, M. F. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
[23]   Landau Subband and Landau Level Properties of AA-Stacked Graphene Superlattice [J].
Chen, Rong-Bin ;
Chiu, Yu-Huang .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) :2557-2566
[24]   A theoretical evaluation of the magneto-optical properties of AA-stacked graphite [J].
Chen, Rong-Bin ;
Chiu, Yu-Huang ;
Lin, Ming-Fa .
CARBON, 2013, 54 :268-276
[25]   Gate-voltage-dependent Landau levels in AA-stacked bilayer graphene [J].
Tsai, Sing-Jyun ;
Chiu, Yu-Huang ;
Ho, Yen-Hung ;
Lin, Ming-Fa .
CHEMICAL PHYSICS LETTERS, 2012, 550 :104-110
[26]   Magneto-plasmon of AA-stacked bilayer graphene nanoribbons at finite temperature [J].
Shyu, Feng-Lin .
PHYSICA B-CONDENSED MATTER, 2024, 688
[27]   Thermal conductivity of disordered AA-stacked bilayer graphene in the presence of bias voltage [J].
Rezania, Hamed ;
Abdi, Ameneh .
EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (07) :1-10
[28]   Computational Investigation of Electronic Properties and Transmission Coefficient in AA-Stacked Bilayer Graphene Using the Nearest-Neighbour Tight-Binding Model [J].
Wong, Yuki ;
Alias, Nurul Ezaila ;
Tan, Tian Swee ;
Lim, Cheng Siong ;
Tan, Michael Loong Peng .
JOURNAL OF NANOTECHNOLOGY, 2025, 2025 (01)
[29]   Metal-insulator transition and phase separation in doped AA-stacked graphene bilayer [J].
Sboychakov, A. O. ;
Rakhmanov, A. L. ;
Rozhkov, A. V. ;
Nori, Franco .
PHYSICAL REVIEW B, 2013, 87 (12)
[30]   Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions [J].
Vuong, A. ;
Trevethan, T. ;
Latham, C. D. ;
Ewels, C. P. ;
Erbahar, D. ;
Briddon, P. R. ;
Rayson, M. J. ;
Heggie, M. I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (15)