Time Fractional Parabolic Equations with Measurable Coefficients and Embeddings for Fractional Parabolic Sobolev Spaces

被引:7
作者
Dong, Hongjie [1 ]
Kim, Doyoon [2 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] Korea Univ, Dept Math, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
L-P; SOLVABILITY;
D O I
10.1093/imrn/rnab229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider time fractional parabolic equations in divergence and non-divergence form when the leading coefficients a(ij) are measurable functions of (t, x(1)) except for a(11), which is a measurable function of either t or x(1). We obtain the solvability in Sobolev spaces of the equations in the whole space, on a half space, and on a partially bounded domain. The proofs use a level set argument, a scaling argument, and embeddings in fractional parabolic Sobolev spaces for which we give a direct and elementary proof.
引用
收藏
页码:17563 / 17610
页数:48
相关论文
共 24 条