An aggregation-based domain decomposition preconditioner for groundwater flow

被引:35
作者
Jenkins, EW
Kees, CE
Kelley, CT
Miller, CT
机构
[1] Univ Texas, TICAM, Austin, TX 78712 USA
[2] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[3] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
domain decomposition; Newton-Krylov-Schwarz methods; Richards' equation; nonlinear equations; aggregation;
D O I
10.1137/S1064827500372274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider theoretical and computational issues associated with an aggregation-based domain decomposition preconditioner applied to a Bi-CGSTAB iterative solver used to solve both Laplace's equation and an important nonlinear model from hydrology used to simulate unsaturated flow, Richards equation. Theoretical results for Laplace's equation provide estimates of the condition number and the rate of convergence for a two-level Schwarz domain decomposition preconditioner. Computational results for Laplace's equation and Richards' equation show excellent scalability, although no theory is yet available to support the results for the difficult nonlinear problem.
引用
收藏
页码:430 / 441
页数:12
相关论文
共 50 条
[41]   A preconditioner based on domain decomposition for h-p finite-element approximation on quasi-uniform meshes [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1358-1376
[42]   Analysis of the SORAS Domain Decomposition Preconditioner for Non-self-adjoint or Indefinite Problems [J].
Bonazzoli, Marcella ;
Claeys, Xavier ;
Nataf, Frederic ;
Tournier, Pierre-Henri .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
[43]   Analysis of the SORAS Domain Decomposition Preconditioner for Non-self-adjoint or Indefinite Problems [J].
Marcella Bonazzoli ;
Xavier Claeys ;
Frédéric Nataf ;
Pierre-Henri Tournier .
Journal of Scientific Computing, 2021, 89
[44]   Survival functions versus conditional aggregation-based survival functions on discrete space [J].
Basarik, Stanislav ;
Borzova, Jana ;
Halcinova, Lenka .
INFORMATION SCIENCES, 2022, 586 :704-720
[45]   An Effective Domain-Decomposition-Based Preconditioner for the FE-BI-MLFMA Method for 3D Scattering Problems [J].
Yang, Ming-Lin ;
Gao, Hong-Wei ;
Song, Wei ;
Sheng, Xin-Qing .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (04) :2263-2268
[46]   A Domain Decomposition Preconditioner for p-FEM Discretizations of Two-dimensional Elliptic Problems [J].
S. Beuchler .
Computing, 2005, 74 :299-317
[47]   A domain decomposition preconditioner for p-FEM discretizations of two-dimensional elliptic problems [J].
Beuchler, S .
COMPUTING, 2005, 74 (04) :299-317
[48]   A weakly overlapping domain decomposition preconditioner for the finite element solution of elliptic partial differential equations [J].
Bank, RE ;
Jimack, PK ;
Nadeem, SA ;
Nepomnyaschikh, SV .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :1817-1841
[49]   An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems [J].
Lasser, C ;
Toselli, A .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1215-1238
[50]   Dual Domain Decomposition Method for High-Resolution 3D Simulation of Groundwater Flow and Transport [J].
Deng, Hao ;
Li, Jiaxin ;
Huang, Jixian ;
Zou, Yanhong ;
Liu, Yu ;
Chen, Yuxiang ;
Zheng, Yang ;
Mao, Xiancheng .
WATER, 2024, 16 (13)