An aggregation-based domain decomposition preconditioner for groundwater flow

被引:35
|
作者
Jenkins, EW
Kees, CE
Kelley, CT
Miller, CT
机构
[1] Univ Texas, TICAM, Austin, TX 78712 USA
[2] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[3] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
domain decomposition; Newton-Krylov-Schwarz methods; Richards' equation; nonlinear equations; aggregation;
D O I
10.1137/S1064827500372274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider theoretical and computational issues associated with an aggregation-based domain decomposition preconditioner applied to a Bi-CGSTAB iterative solver used to solve both Laplace's equation and an important nonlinear model from hydrology used to simulate unsaturated flow, Richards equation. Theoretical results for Laplace's equation provide estimates of the condition number and the rate of convergence for a two-level Schwarz domain decomposition preconditioner. Computational results for Laplace's equation and Richards' equation show excellent scalability, although no theory is yet available to support the results for the difficult nonlinear problem.
引用
收藏
页码:430 / 441
页数:12
相关论文
共 50 条
  • [1] A domain decomposition preconditioner for steady groundwater flow in porous media
    N. Ghahreman
    A. Kerayechian
    Korean journal of computational & applied mathematics, 2000, 7 (3): : 541 - 553
  • [2] ADAPTIVE AGGREGATION-BASED DOMAIN DECOMPOSITION MULTIGRID FOR THE LATTICE WILSON-DIRAC OPERATOR
    Frommer, A.
    Kahl, K.
    Krieg, S.
    Leder, B.
    Rottmann, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) : A1581 - A1608
  • [3] A hybrid domain decomposition method based on aggregation
    Vassilevski, Y
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (04) : 327 - 341
  • [4] A DOMAIN DECOMPOSITION PRECONDITIONER BASED ON A CHANGE TO A MULTILEVEL NODAL BASIS
    TONG, CH
    CHAN, TF
    KUO, CCJ
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (06): : 1486 - 1495
  • [5] Analysis of aggregation-based multigrid
    Muresan, Adrian C.
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) : 1082 - 1103
  • [6] An interface-strip domain decomposition preconditioner
    Quarteroni, Alfio
    Sala, Marzio
    Valli, Alberto
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) : 498 - 516
  • [7] FAULT RESILIENT DOMAIN DECOMPOSITION PRECONDITIONER FOR PDES
    Sargsyan, Khachik
    Rizzi, Francesco
    Mycek, Paul
    Safta, Cosmin
    Morris, Karla
    Najm, Habib
    Le Maitre, Olivier
    Knio, Omar
    Debusschere, Bert
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) : A2317 - A2345
  • [8] Aggregation-based algebraic multilevel preconditioning
    Notay, Y
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) : 998 - 1018
  • [9] Algebraic analysis of aggregation-based multigrid
    Napov, Artem
    Notay, Yvan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) : 539 - 564
  • [10] An improved sweeping domain decomposition preconditioner for the Helmholtz equation
    Stolk, Christiaan C.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (01) : 45 - 76