Beamforming using compressive sensing

被引:128
|
作者
Edelmann, Geoffrey F. [1 ]
Gaumond, Charles F. [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
来源
关键词
SPARSE SIGNALS; RECOVERY;
D O I
10.1121/1.3632046
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Compressive sensing (CS) is compared with conventional beamforming using horizontal beamforming of at-sea, towed-array data. They are compared qualitatively using bearing time records and quantitatively using signal-to-interference ratio. Qualitatively, CS exhibits lower levels of background interference than conventional beamforming. Furthermore, bearing time records show increasing, but tolerable, levels of background interference when the number of elements is decreased. For the full array, CS generates signal-to-interference ratio of 12 dB, but conventional beamforming only 8 dB. The superiority of CS over conventional beamforming is much more pronounced with undersampling.
引用
收藏
页码:EL232 / EL237
页数:6
相关论文
共 50 条
  • [41] Efficient sensing of von Karman vortices using compressive sensing
    Bayindir, Cihan
    Namli, Baris
    COMPUTERS & FLUIDS, 2021, 226
  • [42] Compressive sensing using optimized sensing matrix for face verification
    Oey, Endra
    Jeffry
    Wongso, Kelvin
    Tommy
    INTERNATIONAL CONFERENCE ON ECO ENGINEERING DEVELOPMENT 2017 (ICEED 2017), 2018, 109
  • [43] Combination Complex-Valued Bayesian Compressive Sensing Method for Sparsity Constrained Deconvolution Beamforming
    Wang, Fei
    Tian, Xiang
    Liu, Xuesong
    Gu, Boxuan
    Zhou, Fan
    Chen, Yaowu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [44] Combination Complex-Valued Bayesian Compressive Sensing Method for Sparsity Constrained Deconvolution Beamforming
    Wang, Fei
    Tian, Xiang
    Liu, Xuesong
    Gu, Boxuan
    Zhou, Fan
    Chen, Yaowu
    IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [45] Signal reconstruction of fast moving sound sources using compressive beamforming
    Meng, Fanyu
    Li, Yan
    Masiero, Bruno
    Vorlaender, Michael
    APPLIED ACOUSTICS, 2019, 150 : 236 - 245
  • [46] COMPRESSIVE SENSING BASED INITIAL BEAMFORMING TRAINING FOR MASSIVE MIMO MILLIMETER-WAVE SYSTEMS
    Yan, Han
    Cabria, Danijela
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 620 - 624
  • [47] A Robust Capon Beamforming Approach for Sparse Array Based on Importance Resampling Compressive Covariance Sensing
    Hou, Yuguan
    Gao, Hefu
    Huang, Qinghong
    Qi, Jinzi
    Mao, Xingpeng
    Gu, Cunfeng
    IEEE ACCESS, 2019, 7 : 80478 - 80490
  • [48] Compressive beamforming and directional sound reconstruction using the Kronecker array transform
    Daher, Marcelo A.
    Prete, Carlos A., Jr.
    Nascimento, Vitor H.
    Masiero, Bruno S.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 133 - 137
  • [49] Construction of TEC Maps Using Compressive Sensing
    Sunu, Cansu
    Toker, Cenk
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [50] Blood Velocity Estimation Using Compressive Sensing
    Richy, Julien
    Friboulet, Denis
    Bernard, Adeline
    Bernard, Olivier
    Liebgott, Herve
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (11) : 1979 - 1988