Beamforming using compressive sensing

被引:128
|
作者
Edelmann, Geoffrey F. [1 ]
Gaumond, Charles F. [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
来源
关键词
SPARSE SIGNALS; RECOVERY;
D O I
10.1121/1.3632046
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Compressive sensing (CS) is compared with conventional beamforming using horizontal beamforming of at-sea, towed-array data. They are compared qualitatively using bearing time records and quantitatively using signal-to-interference ratio. Qualitatively, CS exhibits lower levels of background interference than conventional beamforming. Furthermore, bearing time records show increasing, but tolerable, levels of background interference when the number of elements is decreased. For the full array, CS generates signal-to-interference ratio of 12 dB, but conventional beamforming only 8 dB. The superiority of CS over conventional beamforming is much more pronounced with undersampling.
引用
收藏
页码:EL232 / EL237
页数:6
相关论文
共 50 条
  • [31] Compressive Sound Speed Profile Inversion Using Beamforming Results
    Choo, Youngmin
    Seong, Woojae
    REMOTE SENSING, 2018, 10 (05):
  • [32] Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound
    Khan, Shujaat
    Huh, Jaeyoung
    Ye, Jong Chul
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (08) : 1558 - 1572
  • [33] A capon beamforming method for clutter suppression in colocated compressive sensing based MIMO radars
    Yu, Yao
    Sun, Shunqiao
    Petropulu, Athina P.
    COMPRESSIVE SENSING II, 2013, 8717
  • [34] Application of Compressive Sensing in Sparse Spatial Channel Recovery for Beamforming in mmWave Outdoor Systems
    Berraki, Djamal E.
    Armour, Simon M. D.
    Nix, Andrew R.
    2014 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2014, : 887 - 892
  • [35] Rate-Adaptive Feedback With Bayesian Compressive Sensing in Multiuser MIMO Beamforming Systems
    Huang, Xin-Lin
    Wu, Jun
    Wen, Yonggang
    Hu, Fei
    Wang, Yi
    Jiang, Tao
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (07) : 4839 - 4851
  • [36] An adaptive beamforming algorithm for sound source localisation via hybrid compressive sensing reconstruction
    Guo, Wenyong
    Han, Jianggui
    Chen, Hantao
    Yu, Li
    Wu, Zhe
    JOURNAL OF VIBROENGINEERING, 2022, 24 (03) : 591 - 603
  • [37] MULTIPLE SNAPSHOT COMPRESSIVE BEAMFORMING
    Gerstoft, Peter
    Xenaki, Angeliki
    Mecklenbraeuker, Christoph F.
    Zoechmann, Erich
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1774 - 1778
  • [38] Kemelized Method for Compressive Beamforming
    Yan Liying
    Zhao Hangfang
    2016 IEEE/OES CHINA OCEAN ACOUSTICS SYMPOSIUM (COA), 2016,
  • [39] Information sensing for radar target classification using compressive sensing
    Mishra, Amit Kumar
    Wilsenach, Gregory
    Inggs, Mike
    2012 13TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2012, : 326 - 330
  • [40] New Sensing Approach For Compressive Sensing Using Sparsity Domain
    Nouasria, Hamid
    Et-tolba, Mohamed
    2018 19TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON'18), 2018, : 20 - 24