Efficient light emission from hybrid inorganic/organic semiconductor structures by energy level optimization

被引:0
作者
Schlesinger, R. [1 ,2 ]
Bianchi, F. [1 ,2 ]
Blumstengel, S. [1 ,2 ]
Kobin, Bjoern [2 ,4 ]
Moudgil, K. [5 ,6 ]
Barlow, S. [5 ,6 ]
Hecht, S. [2 ,4 ]
Marder, S. R. [5 ,6 ]
Koch, N. [1 ,2 ,3 ]
机构
[1] Humboldt Univ, Inst Phys, Brook Taylor Str 6, D-12489 Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, Brook Taylor Str 6, D-12489 Berlin, Germany
[3] Helmholtz Zentrum Berlin Mat & Energie GmbH, Albert Einstein Str 15, D-12489 Berlin, Germany
[4] Humboldt Univ, Inst Chem, Brook Taylor Str 2, D-12489 Berlin, Germany
[5] Georgia Inst Technol, Sch Chem & Biochem, 901 Atlantic Dr, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Ctr Organ Photon & Elect, 901 Atlantic Dr, Atlanta, GA 30332 USA
来源
OXIDE-BASED MATERIALS AND DEVICES VII | 2016年 / 9749卷
关键词
Hybrid inorganic organic systems; efficient energy transfer; energy level alignment; photoelectron spectroscopy; QUANTUM-WELL;
D O I
10.1117/12.2217006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Innovative hybrid inorganic/organic structures (HIOS) should implement exciton creation by electrical injection in inorganic semiconductors followed by resonant energy transfer and light emission from the organic semiconductor. An inherent obstacle of such designs is the typically unfavorable energy level alignment at HIOS interfaces, which assists in exciton separation thus quenching light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels: ZnO and a tailored ladder-type oligophenylene. Using an organometallic donor interlayer the ZnO work function is substantially lowered eliminating the ZnO - L4P-sp3 interfacial energy level offsets enhancing the hybrid structure's radiative emission yield sevenfold.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Hybrid Resonant Organic Inorganic Nanostructures for Optoelectronic Applications [J].
Agranovich, V. M. ;
Gartstein, Yu. N. ;
Litinskaya, M. .
CHEMICAL REVIEWS, 2011, 111 (09) :5179-5214
[2]   ZnMgO-ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano-LEDs [J].
Bakin, A. ;
El-Shaer, A. ;
Mofor, A. C. ;
Al-Suleiman, M. ;
Schlenker, E. ;
Waag, A. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 1, 2007, 4 (01) :158-+
[3]   Forster energy transfer from a semiconductor quantum well to an organic material overlayer [J].
Basko, D ;
La Rocca, GC ;
Bassani, F ;
Agranovich, VM .
EUROPEAN PHYSICAL JOURNAL B, 1999, 8 (03) :353-362
[4]   Converting Wannier into Frenkel excitons in an inorganic/organic hybrid semiconductor nanostructure [J].
Blumstengel, S. ;
Sadofev, S. ;
Xu, C. ;
Puls, J. ;
Henneberger, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[5]   Extreme low-temperature molecular beam epitaxy of ZnO-based quantum structures [J].
Blumstengel, S. ;
Sadofev, S. ;
Kirmse, H. ;
Henneberger, F. .
APPLIED PHYSICS LETTERS, 2011, 98 (03)
[6]   Electronic coupling of optical excitations in organic/inorganic semiconductor hybrid structures [J].
Blumstengel, S. ;
Sadofev, S. ;
Henneberger, F. .
NEW JOURNAL OF PHYSICS, 2008, 10
[7]   ZnO/anthracene based inorganic/organic nanowire heterostructure: Photoresponse and photoluminescence studies [J].
Dhara, Soumen ;
Giri, P. K. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
[8]  
Greiner MT, 2012, NAT MATER, V11, P76, DOI [10.1038/NMAT3159, 10.1038/nmat3159]
[9]   n-Doping of Organic Electronic Materials using Air-Stable Organometallics [J].
Guo, Song ;
Kim, Sang Bok ;
Mohapatra, Swagat K. ;
Qi, Yabing ;
Sajoto, Tissa ;
Kahn, Antoine ;
Marder, Seth R. ;
Barlow, Stephen .
ADVANCED MATERIALS, 2012, 24 (05) :699-+
[10]   Reduction of ruthenium arenecyclopentadienyl complexes - Reactions induced by electron transfer [J].
Gusev, OV ;
Ievlev, MA ;
Peterleitner, MG ;
Peregudova, SM ;
Denisovich, LI ;
Petrovskii, PV ;
Ustynyuk, NA .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1997, 534 (1-2) :57-66