Phytoplankton calcification in a high-CO2 world

被引:574
|
作者
Iglesias-Rodriguez, M. Debora [1 ]
Halloran, Paul R. [2 ]
Rickaby, Rosalind E. M. [2 ]
Hall, Ian R. [3 ]
Colmenero-Hidalgo, Elena [3 ]
Gittins, John R.
Green, Darryl R. H. [1 ]
Tyrrell, Toby [1 ]
Gibbs, Samantha J. [1 ]
von Dassow, Peter [4 ]
Rehm, Eric
Armbrust, E. Virginia [5 ]
Boessenkool, Karin P. [3 ]
机构
[1] Univ Southampton, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England
[2] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England
[3] Cardiff Univ, Sch Earth Ocean & Planetary Sci, Cardiff CF10 3YE, S Glam, Wales
[4] Stn Biol Roscoff, F-29682 Roscoff, France
[5] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA
基金
英国自然环境研究理事会;
关键词
D O I
10.1126/science.1154122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid- Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.
引用
收藏
页码:336 / 340
页数:5
相关论文
共 50 条
  • [1] Comment on "Phytoplankton Calcification in a High-CO2 World"
    Riebesell, Ulf
    Bellerby, Richard G. J.
    Engel, Anja
    Fabry, Victoria J.
    Hutchins, David A.
    Reusch, Thorsten B. H.
    Schulz, Kai G.
    Morel, Francois M. M.
    SCIENCE, 2008, 322 (5907)
  • [2] Response to Comment on "Phytoplankton Calcification in a High-CO2 World"
    Iglesias-Rodriguez, M. Debora
    Buitenhuis, Erik T.
    Raven, John A.
    Schofield, Oscar
    Poulton, Alex J.
    Gibbs, Samantha
    Halloran, Paul R.
    de Baar, Hein J. W.
    SCIENCE, 2008, 322 (5907)
  • [3] Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures
    Schoepf, Verena
    Grottoli, Andrea G.
    Warner, Mark E.
    Cai, Wei-Jun
    Melman, Todd F.
    Hoadley, Kenneth D.
    Pettay, D. Tye
    Hu, Xinping
    Li, Qian
    Xu, Hui
    Wang, Yongchen
    Matsui, Yohei
    Baumann, Justin H.
    PLOS ONE, 2013, 8 (10):
  • [4] Oaks in a high-CO2 world
    Norby, RJ
    ANNALES DES SCIENCES FORESTIERES, 1996, 53 (2-3): : 413 - 429
  • [5] Skeletal mineralogy in a high-CO2 world
    Ries, Justin B.
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2011, 403 (1-2) : 54 - 64
  • [6] BENTHIC INVERTEBRATES IN A HIGH-CO2 WORLD
    Wicks, Laura C.
    Roberts, J. Murray
    OCEANOGRAPHY AND MARINE BIOLOGY: AN ANNUAL REVIEW, VOL 50, 2012, 50 : 127 - 187
  • [7] SCENARIO FOR A WARM, HIGH-CO2 WORLD
    WIGLEY, TML
    JONES, PD
    KELLY, PM
    NATURE, 1980, 283 (5742) : 17 - 21
  • [8] Aquatic primary production in a high-CO2 world
    Low-Decarie, Etienne
    Fussmann, Gregor F.
    Bell, Graham
    TRENDS IN ECOLOGY & EVOLUTION, 2014, 29 (04) : 223 - 232
  • [9] Weakening Mechanisms of the Serpulid Tube in a High-CO2 World
    Li, Chaoyi
    Chan, Vera B. S.
    He, Chong
    Meng, Yuan
    Yao, Haimin
    Shih, Kaimin
    Thiyagarajan, Vengatesen
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (24) : 14158 - 14167
  • [10] Impacts of changing ocean chemistry in a high-CO2 world
    Turley, C.
    MINERALOGICAL MAGAZINE, 2008, 72 (01) : 359 - 362