The β-expansion of periodic dressed chain models

被引:1
作者
Correa Silva, E. V. [2 ]
de Souza, S. M. [3 ]
Thomaz, M. T. [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
[2] Univ Estado Rio de Janeiro, Fac Tecnol, Dept Matemat Fis & Comp, BR-27537000 Resende, RJ, Brazil
[3] Univ Fed Lavras, Dept Ciencias Exatas, BR-37200000 Lavras, MG, Brazil
关键词
Quantum statistical mechanics; beta-expansion; Ising model; Staggered; SYSTEMS;
D O I
10.1016/j.physa.2011.04.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We revisit the method of calculating the beta-expansion of the Helmholtz free energy of any one-dimensional (1D) Hamiltonian with invariance under space translations, presented in [O. Rojas, S.M. de Souza, M.T. Thomaz, J. Math. Phys. 43 (2002) 1390], extending this method to 1-D Hamiltonians that are invariant under translations along super-sites (sequences of I sites). The method is applicable, for instance, to spin models and bosonic/fermionic versions of Hubbard models, either quantum or classical. As an example, we focus on the staggered spin-S Ising model in the presence of a longitudinal magnetic field, comparing some of its thermodynamic functions to those of the standard Ising model. We show that for arbitrary values of spin (S is an element of (1, 3/2, 2, ...)) but distinct values of the coupling constant and the magnetic field, the specific heat and the z-component of the staggered and usual magnetizations can be well approximated by their respective thermodynamic function of the spin-1/2 models in a suitable interval of temperature. These approximations are valid for the standard Ising model as well as for the staggered model, the thermodynamics of which are known exactly. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3108 / 3119
页数:12
相关论文
共 17 条
[1]   Finite-size effects in single chain magnets: An experimental and theoretical study [J].
Bogani, L ;
Caneschi, A ;
Fedi, M ;
Gatteschi, D ;
Massi, M ;
Novak, MA ;
Pini, MG ;
Rettori, A ;
Sessoli, R ;
Vindigni, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (20) :207204-1
[2]  
Boivin Jerome., 1989, Baxter
[3]   Spin dynamics of a tetrahedral cluster magnet [J].
Brenig, W .
PHYSICAL REVIEW B, 2003, 67 (06)
[4]   Magnetism of a tetrahedral cluster spin chain [J].
Brenig, W ;
Becker, KW .
PHYSICAL REVIEW B, 2001, 64 (21)
[5]  
Caneschi A, 2001, ANGEW CHEM INT EDIT, V40, P1760, DOI 10.1002/1521-3773(20010504)40:9<1760::AID-ANIE17600>3.0.CO
[6]  
2-U
[7]   Evidence for single-chain magnet behavior in a MnIII-NiII chain designed with high spin magnetic units:: A route to high temperature metastable magnets [J].
Clérac, R ;
Miyasaka, H ;
Yamashita, M ;
Coulon, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) :12837-12844
[8]   Magnetism and thermodynamics of spin-1/2 Heisenberg diamond chains in a magnetic field [J].
Gu, Bo ;
Su, Gang .
PHYSICAL REVIEW B, 2007, 75 (17)
[9]   Spin correlation and relaxational dynamics in molecular-based single-chain magnets [J].
Kishine, Jun-ichiro ;
Watanabe, Tomonari ;
Deguchi, Hiroyuki ;
Mito, Masaki ;
Sakai, Toru ;
Tajiri, Takayuki ;
Yamashita, Masahiro ;
Miyasaka, Hitoshi .
PHYSICAL REVIEW B, 2006, 74 (22)
[10]   Magnetic light scattering in low-dimensional quantum spin systems [J].
Lemmens, P ;
Güntherodt, G ;
Gros, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 375 (01) :1-103