Optimal pulses for arbitrary dispersive media

被引:3
作者
Alonso, M. A. [1 ,2 ]
Setala, T. [1 ]
Friberg, A. T. [1 ,3 ,4 ]
机构
[1] Aalto Univ, Dept Appl Phys, FI-00076 Aalto, Finland
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[3] Univ Eastern Finland, Dept Math & Phys, FI-80101 Joensuu, Finland
[4] Royal Inst Technol, Dept Microelect & Appl Phys, SE-16440 Kista, Sweden
基金
芬兰科学院;
关键词
Light pulses; pulse quality factor; phase space; dispersion; variational methods; BEAM-PROPAGATION; QUALITY FACTOR; DISTRIBUTIONS;
D O I
10.2971/jeos.2011.11035
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A variational procedure is given for finding the pulses for which the initial temporal rms width and the rate of increase of this width are jointly minimized for propagation in non-absorbing media with arbitrary dispersive properties. We show that, while in linearly dispersive media the optimal pulses are Gaussian, in other situations such as a hollow metallic waveguide or for purely cubic dispersion departures from Gaussian behavior become evident. An interpretation of the results in terms of suitable phase-space representations is also given. [DOI: 10.2971/jeos.2011.11035]
引用
收藏
页数:6
相关论文
共 18 条
[1]  
Agrawal G P., 2012, Nonlinear Fiber Optics
[2]  
Arfken G. B., 2000, Mathematical Methods for Physicists
[3]   BEAM-PROPAGATION FACTOR OF DIFFRACTED LASER-BEAMS [J].
BELANGER, PA ;
CHAMPAGNE, Y ;
PARE, C .
OPTICS COMMUNICATIONS, 1994, 105 (3-4) :233-242
[4]   BEAM PROPAGATION AND THE ABCD RAY MATRICES [J].
BELANGER, PA .
OPTICS LETTERS, 1991, 16 (04) :196-198
[5]   Method for pulse transformations using dispersion varying optical fibre tapers [J].
Broderick, N. G. R. .
OPTICS EXPRESS, 2010, 18 (23) :24060-24069
[6]   SPACE-TIME DUALITY AND THE THEORY OF TEMPORAL IMAGING [J].
KOLNER, BH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (08) :1951-1963
[7]   TEMPORAL IMAGING WITH A TIME LENS [J].
KOLNER, BH ;
NAZARATHY, M .
OPTICS LETTERS, 1989, 14 (12) :630-632
[8]   Non-gaussian pulse propagation and pulse quality factor using intensity moment method [J].
Lin, GC ;
Sui, CH ;
Lin, Q .
CHINESE PHYSICS LETTERS, 1999, 16 (06) :415-417
[9]   Approximate wave function from approximate non-representable Wigner distributions [J].
Loughlin, Patrick ;
Cohen, Leon .
JOURNAL OF MODERN OPTICS, 2008, 55 (19-20) :3379-3387
[10]   A Wigner approximation method for wave propagation (L) [J].
Loughlin, PJ ;
Cohen, L .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2005, 118 (03) :1268-1271