Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors

被引:48
作者
Duan, Yu [1 ,5 ]
Hu, Tu [3 ,5 ]
Yang, Li [1 ,2 ,3 ,5 ]
Gao, Jiyun [4 ]
Guo, Shenghui [1 ,2 ,3 ,5 ]
Hou, Ming [1 ,5 ]
Ye, Xiaolei [1 ,5 ]
机构
[1] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, State Int Joint Res Ctr Adv Technol Superhard Mat, Kunming 650093, Yunnan, Peoples R China
[3] Natl Local Joint Lab Engn Applicat Microwave Ener, Kunming 650093, Yunnan, Peoples R China
[4] Yunnan Minzu Univ, Sch Chem & Environm, Kunming 650093, Yunnan, Peoples R China
[5] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Co3O4; MPCVD; Supercapacitor; OXYGEN EVOLUTION REACTION; ASYMMETRIC SUPERCAPACITORS; CARBON NANOFIBERS; HYBRID; NANOSHEETS; GRAPHENE; PERFORMANCE; SURFACE; GROWTH; OXIDE;
D O I
10.1016/j.jallcom.2018.08.204
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The large volume expansion-contraction and low conductivity of Co3O4 leads to electrode pulverisation, capacity loss and poor cycling stability in the application of a capacitor. Herein, an effective and low cost strategy for microwave plasma chemical vapour deposition (CVD) equipment with a modified household microwave oven was implemented to handle micro-porous Co3O4 powder and get high O vacancy electrode active materials. The results show that the morphology, crystal structure and elemental composition of the sample are strongly affected by H-2 plasma. The capacity of the etched micro-porous Co3O4 powder is about 128 Fg(-1) after 4000 cycles, which is 3.5 times larger than that of the origin powder. The performance improvement mechanism of the plasma etch was also confirmed. The results show that microwave plasma etching can effectively improve the performance of Co3O4 capacitor materials due to O vacancy increasing and the ratio of Co2+/Co3+ changing, which will benefit other kinds of oxide semiconductor electrode materials. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 161
页数:6
相关论文
共 42 条
[1]   Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis [J].
Cai, Zhao ;
Bi, Yongmin ;
Hu, Enyuan ;
Liu, Wen ;
Dwarica, Nico ;
Tian, Yang ;
Li, Xiaolin ;
Kuang, Yun ;
Li, Yaping ;
Yang, Xiao-Qing ;
Wang, Hailiang ;
Sun, Xiaoming .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)
[2]   Densification by Compaction as an Effective Low-Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co3O4 Sponge [J].
Chen, Yijun ;
Wang, Yunsong ;
Wang, Zhipeng ;
Zou, Mingchu ;
Zhang, Hui ;
Zhao, Wenqi ;
Yousaf, Muhammad ;
Yang, Liusi ;
Cao, Anyuan ;
Han, Ray P. S. .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[3]   Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol [J].
Chen, Yuanting ;
Wang, Houpeng ;
Liu, Chang-Jun ;
Zeng, Zhiyuan ;
Zhang, Hua ;
Zhou, Chunmei ;
Jia, Xinli ;
Yang, Yanhui .
JOURNAL OF CATALYSIS, 2012, 289 :105-117
[4]   Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction [J].
Chen, Zhu ;
Kronawitter, Coleman X. ;
Koel, Bruce E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (43) :29387-29393
[5]   Hierarchical Porous Carbonized Co3O4 Inverse Opals via Combined Block Copolymer and Colloid Templating as Bifunctional Electrocatalysts in Li-O2 Battery [J].
Cho, Seol A. ;
Jang, Yu Jin ;
Lim, Hee-Dae ;
Lee, Ji-Eun ;
Jang, Yoon Hee ;
Trang-Thi Hong Nguyen ;
Mota, Filipe Marques ;
Fenning, David P. ;
Kang, Kisuk ;
Shao-Horn, Yang ;
Kim, Dong Ha .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[6]   Adhesion enhancement of DLC on CoCrMo alloy by diamond and nitrogen incorporation for wear resistant applications [J].
Corona-Gomez, J. ;
Shiri, S. ;
Mohammadtaheri, M. ;
Yang, Q. .
SURFACE & COATINGS TECHNOLOGY, 2017, 332 :120-127
[7]   Atomic Layer-by-Layer Co3O4/Graphene Composite for High Performance Lithium-Ion Batteries [J].
Dou, Yuhai ;
Xu, Jiantie ;
Ruan, Boyang ;
Liu, Qiannan ;
Pan, Yuede ;
Sun, Ziqi ;
Dou, Shi Xue .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[8]   Graphene-Mimicking 2D Porous Co3O4 Nanofoils for Lithium Battery Applications [J].
Eom, Wonsik ;
Kim, Ayoung ;
Park, Hun ;
Kim, Hansu ;
Han, Tae Hee .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (42) :7605-7613
[9]   Porous ZnO-Coated Co3O4 Nanorod as a High-Energy-Density Supercapacitor Material [J].
Gao, Miao ;
Wang, Wei-Kang ;
Rong, Qing ;
Jiang, Jun ;
Zhang, Ying-Jie ;
Yu, Han-Qing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (27) :23163-23173
[10]   Needle-like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors [J].
Guan, Qun ;
Cheng, Jianli ;
Wang, Bin ;
Ni, Wei ;
Gu, Guifang ;
Li, Xiaodong ;
Huang, Ling ;
Yang, Guangcheng ;
Nie, Fude .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7626-7632