Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues

被引:91
作者
Karolak, Aleksandra [1 ]
Markov, Dmitry A. [2 ,3 ]
McCawley, Lisa J. [2 ,3 ]
Rejniak, Katarzyna A. [1 ,4 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Integrated Math Oncol Dept, Tampa, FL 33612 USA
[2] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Nashville, TN 37235 USA
[4] Univ S Florida, Morsani Coll Med, Dept Oncol Sci, Tampa, FL 33620 USA
基金
美国国家卫生研究院;
关键词
mathematical oncology; agent-based models; virtual clinical trials; cancer treatment; mathematical modelling; CELL-BASED MODEL; IN-SITU DCIS; PRECISION MEDICINE; BREAST-CANCER; DRUG-DELIVERY; ORGANOTYPIC CULTURE; EPITHELIAL ACINI; CLINICAL-TRIALS; OVARIAN-CANCER; DIFFUSION MRI;
D O I
10.1098/rsif.2017.0703
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multicomponent tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
引用
收藏
页数:16
相关论文
共 179 条
[61]   Local and global dynamics of the basement membrane during branching morphogenesis require protease activity and actomyosin contractility [J].
Harunaga, Jill S. ;
Doyle, Andrew D. ;
Yamada, Kenneth M. .
DEVELOPMENTAL BIOLOGY, 2014, 394 (02) :197-205
[62]   Integrative physical oncology [J].
Hatzikirou, Haralampos ;
Chauviere, Arnaud ;
Bauer, Amy L. ;
Leier, Andre ;
Lewis, Michael T. ;
Macklin, Paul ;
Marquez-Lago, Tatiana T. ;
Bearer, Elaine L. ;
Cristini, Vittorio .
WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2012, 4 (01) :1-14
[63]   Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo [J].
Hickman, John A. ;
Graeser, Ralph ;
de Hoogt, Ronald ;
Vidic, Suzana ;
Brito, Catarina ;
Gutekunst, Matthias ;
van der Kuip, Heiko .
BIOTECHNOLOGY JOURNAL, 2014, 9 (09) :1115-1128
[64]   Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids [J].
Huang, Ling ;
Holtzinger, Audrey ;
Jagan, Ishaan ;
BeGora, Michael ;
Lohse, Ines ;
Ngai, Nicholas ;
Nostro, Cristina ;
Wang, Rennian ;
Muthuswamy, Lakshmi B. ;
Crawford, Howard C. ;
Arrowsmith, Cheryl ;
Kalloger, Steve E. ;
Renouf, Daniel J. ;
Connor, Ashton A. ;
Cleary, Sean ;
Schaeffer, David F. ;
Roehrl, Michael ;
Tsao, Ming-Sound ;
Gallinger, Steven ;
Keller, Gordon ;
Muthuswamy, Senthil K. .
NATURE MEDICINE, 2015, 21 (11) :1364-1371
[65]   Cellular foundations of mammary tubulogenesis [J].
Huebner, Robert J. ;
Ewald, Andrew J. .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2014, 31 :124-131
[66]   Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data [J].
Jagiella, Nick ;
Mueller, Benedikt ;
Mueller, Margareta ;
Vignon-Clementel, Irene E. ;
Drasdo, Dirk .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (02)
[67]   A Sub-Cellular Viscoelastic Model for Cell Population Mechanics [J].
Jamali, Yousef ;
Azimi, Mohammad ;
Mofrad, Mohammad R. K. .
PLOS ONE, 2010, 5 (08)
[68]   Personalized genomic analyses for cancer mutation discovery and interpretation [J].
Jones, Sian .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (283)
[69]  
Karolak A, SCI REP IN PRESS
[70]  
Karolak A, 2017, TUMOR ORGANOIDS, P193