Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues

被引:91
作者
Karolak, Aleksandra [1 ]
Markov, Dmitry A. [2 ,3 ]
McCawley, Lisa J. [2 ,3 ]
Rejniak, Katarzyna A. [1 ,4 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Integrated Math Oncol Dept, Tampa, FL 33612 USA
[2] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Nashville, TN 37235 USA
[4] Univ S Florida, Morsani Coll Med, Dept Oncol Sci, Tampa, FL 33620 USA
基金
美国国家卫生研究院;
关键词
mathematical oncology; agent-based models; virtual clinical trials; cancer treatment; mathematical modelling; CELL-BASED MODEL; IN-SITU DCIS; PRECISION MEDICINE; BREAST-CANCER; DRUG-DELIVERY; ORGANOTYPIC CULTURE; EPITHELIAL ACINI; CLINICAL-TRIALS; OVARIAN-CANCER; DIFFUSION MRI;
D O I
10.1098/rsif.2017.0703
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multicomponent tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
引用
收藏
页数:16
相关论文
共 179 条
[1]  
Adriani G, 2015, IEEE ENG MED BIO, P338, DOI 10.1109/EMBC.2015.7318368
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Content-Based Microscopic Image Retrieval System for Multi-Image Queries [J].
Akakin, Hatice Cinar ;
Gurcan, Metin N. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (04) :758-769
[4]   Towards whole-organ modelling of tumour growth [J].
Alarcón, T ;
Byrne, HM ;
Maini, PK .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2004, 85 (2-3) :451-472
[5]   The mathematics of cancer: integrating quantitative models [J].
Altrock, Philipp M. ;
Liu, Lin L. ;
Michor, Franziska .
NATURE REVIEWS CANCER, 2015, 15 (12) :730-745
[6]   Microenvironment driven invasion: a multiscale multimodel investigation [J].
Anderson, Alexander R. A. ;
Rejniak, Katarzyna A. ;
Gerlee, Philip ;
Quaranta, Vito .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (4-5) :579-624
[7]  
Anderson AR., 2007, SINGLE CELL BASED MO, P1
[8]   A Matter of Timing: Identifying Significant Multi-Dose Radiotherapy Improvements by Numerical Simulation and Genetic Algorithm Search [J].
Angus, Simon D. ;
Piotrowska, Monika Joanna .
PLOS ONE, 2014, 9 (12)
[9]   Precision medicine for metastatic breast cancer-limitations and solutions [J].
Arnedos, Monica ;
Vicier, Cecile ;
Loi, Sherene ;
Lefebvre, Celine ;
Michiels, Stefan ;
Bonnefoi, Herve ;
Andre, Fabrice .
NATURE REVIEWS CLINICAL ONCOLOGY, 2015, 12 (12) :693-704
[10]   From patient-specific mathematical neuro-oncology to precision medicine [J].
Baldock, A. L. ;
Rockne, R. C. ;
Boone, A. D. ;
Neal, M. L. ;
Hawkins-Daarud, A. ;
Corwin, D. M. ;
Bridge, C. A. ;
Guyman, L. A. ;
Trister, A. D. ;
Mrugala, M. M. ;
Rockhill, J. K. ;
Swanson, K. R. .
FRONTIERS IN ONCOLOGY, 2013, 3