The Atkinson formula for the periodic zeta-function

被引:2
|
作者
Karaliunaite, J. [1 ]
Laurincikas, A. [1 ]
机构
[1] Vilnius State Univ, LT-03225 Vilnius, Lithuania
关键词
Atkinson formula; mean square; periodic zeta-function;
D O I
10.1007/s10986-007-0029-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an Atkinson-type formula for the periodic zeta-function. with rational parameter lambda.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 45 条
  • [1] The Atkinson formula for the periodic zeta-function
    J. Karaliūnaitė
    A. Laurinčikas
    Lithuanian Mathematical Journal, 2007, 47 : 412 - 422
  • [2] An explicit formula of Atkinson type for the product of the Riemann zeta-function and a Dirichlet polynomial
    Ishikawa, Hideaki
    Matsumoto, Kohji
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (01): : 102 - 126
  • [3] On the Atkinson formula for the ζ function
    Dona, Daniele
    Alterman, Sebastian Zuniga
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [4] On the error term in the mean square formula for the Riemann zeta-function in the critical strip
    Ivic, A
    Matsumoto, K
    MONATSHEFTE FUR MATHEMATIK, 1996, 121 (03): : 213 - 229
  • [5] Mean square of the Mellin transform of the Riemann zeta-function
    Laurincikas, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) : 617 - 629
  • [6] Second moment of the Beurling zeta-function
    Drungilas, Paulius
    Garunkstis, Ramunas
    Novikas, Aivaras
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (03) : 317 - 337
  • [7] ON A DIVISOR PROBLEM RELATED TO THE EPSTEIN ZETA-FUNCTION, III
    Lu, Guangshi
    Wu, Jie
    Zhai, Wenguang
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (04) : 953 - 963
  • [8] On some upper bounds for the zeta-function and the Dirichlet divisor problem
    Ivic, Aleksandar
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (08) : 2231 - 2239
  • [9] On the periodic zeta-function. II
    Laurinčikas A.
    Šiaučiunas D.
    Lithuanian Mathematical Journal, 2001, 41 (4) : 361 - 372
  • [10] Remarks on the universality of the periodic zeta function
    Laurincikas, A.
    Siauciunas, D.
    MATHEMATICAL NOTES, 2006, 80 (3-4) : 532 - 538