Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems

被引:63
作者
Guo, ZM [1 ]
Yu, JS [1 ]
机构
[1] Hunan Univ, Dept Appl Math, Changsha 410082, Peoples R China
基金
跨世纪优秀人才计划 国家教委《跨世纪优秀人才计划》基金;
关键词
periodic solutions; subharmonic solutions; discrete Hamiltonian systems; genus; linking theorem;
D O I
10.1016/j.na.2003.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new results are obtained for the existence of multiple periodic solutions and subharmonic solutions to discrete Hamiltonian systems [GRAPHICS] by using critical point theory, where x(1), x(2) is an element of R-d, H is an element of C-1(R x R-d x R-d, R). (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:969 / 983
页数:15
相关论文
共 14 条
[1]   EQUIVALENCE OF DISCRETE EULER EQUATIONS AND DISCRETE HAMILTONIAN-SYSTEMS [J].
AHLBRANDT, CD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) :498-517
[2]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[3]   Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions [J].
Bohner, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :804-826
[4]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8
[5]   DISCONJUGACY, DISFOCALITY, AND OSCILLATION OF 2ND-ORDER DIFFERENCE-EQUATIONS [J].
CHEN, SZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :383-394
[6]  
Elaydi S., 1994, FUNKC EKVACIOJ-SER I, V37, P401
[7]   DISCONJUGACY FOR LINEAR HAMILTONIAN DIFFERENCE-SYSTEMS [J].
ERBE, LH ;
YAN, PX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (02) :355-367
[8]  
Guo ZM, 2003, SCI CHINA SER A, V46, P506
[9]  
HARTMAN P, 1978, T AM MATH SOC, V246, P1
[10]  
LONG Y, 1993, INDEX THEORY HAMILTO