Lagrange interpolation on Chebyshev points of two variables

被引:62
作者
Xu, Y
机构
[1] Department of Mathematics, University of Oregon, Eugene
基金
美国国家科学基金会;
关键词
D O I
10.1006/jath.1996.0102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study interpolation polynomials based on the points in [-1, 1] x [-1, 1] that are common zeros of quasi-orthogonal Chebyshev polynomials and nodes of near minimal degree cubature formula. With the help of the cubature formula we establish the mean convergence of the interpolation polynomials. (C) 1996 Academic Press. Inc.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 17 条
[1]  
[Anonymous], COMMON ZEROS POLYNOM
[2]   Fejer means for multivariate Fourier series [J].
Berens, H ;
Xu, Y .
MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (03) :449-465
[3]   MINIMAL CUBATURE FORMULAS OF DEGREE 2K-1 FOR 2 CLASSICAL FUNCTIONALS [J].
COOLS, R ;
SCHMID, HJ .
COMPUTING, 1989, 43 (02) :141-157
[4]  
ENGELS H, 1980, NUMERICAL QUADRATURE
[5]   QUADRATURE SUMS INVOLVING PTH POWERS OF POLYNOMIALS [J].
LUBINSKY, DS ;
MATE, A ;
NEVAI, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (02) :531-544
[6]   MINIMUM-POINT CUBATURE FORMULAS [J].
MOLLER, HM .
NUMERISCHE MATHEMATIK, 1976, 25 (02) :185-200
[7]   CONSTRUCTION OF ALGEBRAIC CUBATURE RULES USING POLYNOMIAL IDEAL THEORY [J].
MORROW, CR ;
PATTERSON, TNL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (05) :953-976
[8]  
Mysovskikh I. P., 1981, INTERPOLATORY CUBATU
[9]  
Stein E. M., 1970, Princeton Mathematical Series
[10]  
Stein E.M., 1971, PRINCETON MATH SERIE, V32