JOINTLY SUBADDITIVE MAPPINGS INDUCED BY OPERATOR CONVEX FUNCTIONS

被引:3
作者
Niezgoda, Marek [1 ]
机构
[1] Univ Life Sci Lublin, Dept Appl Math & Comp Sci, Akad 13, PL-20950 Lublin, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2015年 / 18卷 / 01期
关键词
Operator convex function; positive linear map; operator Jensen inequality; Choi-Davis-Jensen's inequality; sub-/superadditive mapping; generalized inverse; POSITIVE LINEAR-MAPS; C-ASTERISK-MODULES; ADJOINTABLE OPERATORS; GENERALIZED INVERSES; INEQUALITY; ALGEBRAS; SPECTRA;
D O I
10.7153/mia-18-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study jointly subadditive mappings induced by operator convex functions and generalized inverses of positive linear maps. We formulate conditions under which the inequalities T fT(-)(Sigma(n)(k=1) T(k)A(k)) <= Sigma(n)(k=1) T(k)f(A(k)) and T fT(-)Phi(A) <= Phi(f (A)) hold, where f is an operator convex function, A,A(k) is an element of B(H) with Hilbert space H, and T, T-k and Phi are positive linear maps (not necessarily unital) on B(H), with a (reflexive) generalized inverse T- of T. We also show that the transformation T fT(-) (B) is jointly subadditive in (T, B) and antimonotone in T(I).
引用
收藏
页码:169 / 184
页数:16
相关论文
共 27 条
[1]   Inequalities for quantum relative entropy [J].
Bebiano, N ;
Lemos, R ;
da Providência, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 :159-172
[2]   LINEAR MAPS STRONGLY PRESERVING MOORE-PENROSE INVERTIBILITY [J].
Burgos, Maria ;
Marquez-Garcia, A. C. ;
Morales-Campoy, A. .
OPERATORS AND MATRICES, 2012, 6 (04) :819-831
[3]   SCHWARZ INEQUALITY FOR POSITIVE LINEAR MAPS ON C-STAR-ALGEBRAS [J].
CHOI, MD .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) :565-574
[4]  
Csiszar I., 1967, Studia Scientifica Mathematica Hungary, V2, P229
[5]  
Csiszar I., Information Theory: Coding Theorems for Discrete Memoryless Systems
[6]  
Davis C., 1957, Proc. Amer. Math. Soc., V8, P42, DOI DOI 10.1090/S0002-9939-1957-0084120-4
[7]   A REFINEMENT OF JENSEN'S INEQUALITY WITH APPLICATIONS FOR f-DIVERGENCE MEASURES [J].
Dragomir, S. S. .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01) :153-164
[8]   A matrix convexity approach to some celebrated quantum inequalities [J].
Effros, Edward G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (04) :1006-1008
[9]  
Fujii J. I., 1989, Math. Japonica, V34, P341
[10]  
Hansen F, 2007, MATH SCAND, V100, P61