Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings

被引:11
作者
Zhu, Fu-bo [1 ]
Ji, Jie [2 ]
Zhang, Jian-bin [2 ,3 ]
机构
[1] Huaiyin Normal Coll, Dept Math, Huaian 223001, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Xuzhou Normal Univ, Sch Math Sci, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-component matrix spectral problem; negative Kaup-Newell equation hierarchy; integrable coupling;
D O I
10.1016/j.physleta.2007.09.029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two hierarchies of multi-component Kaup-Newell equations are derived from an arbitrary order matrix spectral problem, including positive non-isospectral Kaup-Newell hierarchy and negative non-isospectral Kaup-Newell hierarchy. Moreover, new integrable couplings of the resulting Kaup-Newell soliton hierarchies are constructed by enlarging the associated matrix spectral problem. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1244 / 1249
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1991, LONDON MATH SOC LECT
[2]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[3]   New Liouville integrable noncanonical Hamiltonian systems from the AKNS spectral problem [J].
Blaszak, M ;
Ma, WX .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (06) :3107-3123
[4]   A new multi-component matrix loop algebra and a multi-component integrable couplings of the NLS-MKdV hierarchy and its Hamiltonian structure [J].
Chang, Hui ;
Zhang, Yufeng .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :473-478
[5]  
CHEN DY, 2006, SOLITON INTRO
[6]  
DICKEY LA, 2003, SOLITON EQUATIONS HA
[7]   Topics in quantum integrable systems [J].
Hikami, K ;
Wadati, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) :3569-3594
[8]  
Ji Jie, 2007, Acta Mathematicae Applicatae Sinica, V30, P104
[9]   Two types of new integrable decompositions of the Kaup-Newell equation [J].
Ji, Jie ;
Zhou, Ruguang .
CHAOS SOLITONS & FRACTALS, 2006, 30 (04) :993-1003
[10]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801