Finite difference schemes for the "parabolic" equation in a variable depth environment with a rigid bottom boundary condition

被引:12
作者
Akrivis, GD [1 ]
Dougalis, VA
Zouraris, GE
机构
[1] Univ Ioannina, Dept Comp Sci, GR-45110 Ioannina, Greece
[2] Univ Athens, Dept Math, GR-15784 Zographou, Greece
[3] FORTH, Inst Appl & Computat Math, Heraklion, Crete, Greece
[4] Royal Inst Technol, KTH, Dept Numer Anal & Comp Sci, NADA, S-10044 Stockholm, Sweden
关键词
Schrodinger evolution equation; parabolic approximations; underwater acoustics; finite difference error estimates; variable domain problems;
D O I
10.1137/S0036142999367460
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a linear, Schrodinger-type partial differential equation, the parabolic equation of underwater acoustics, in a layer of water bounded below by a rigid bottom of variable topography. Using a change of depth variable technique we transform the problem into one with horizontal bottom for which we establish an a priori H-1 estimate and prove an optimal-order error bound in the maximum norm for a Crank Nicolson-type finite difference approximation of its solution. We also consider the same problem with an alternative rigid bottom boundary condition due to Abrahamsson and Kreiss and prove again a priori H-1 estimates and optimal-order error bounds for a Crank Nicolson scheme.
引用
收藏
页码:539 / 565
页数:27
相关论文
共 26 条
[1]   THE INITIAL BOUNDARY-VALUE PROBLEM FOR THE SCHRODINGER-EQUATION [J].
ABRAHAMSSON, L ;
KREISS, HO .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (05) :385-390
[2]   BOUNDARY-CONDITIONS FOR THE PARABOLIC EQUATION IN A RANGE-DEPENDENT DUCT [J].
ABRAHAMSSON, L ;
KREISS, HO .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 87 (06) :2438-2441
[3]  
Akrivis G.D., 1990, B GREEK MATH SOC, V31, P19
[4]   Error estimates for finite difference methods for a wide-angle ''parabolic'' equation [J].
Akrivis, GD ;
Dougalis, VA ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2488-2509
[5]  
AKRIVIS GD, 1991, MATH COMPUT, V56, P505, DOI 10.1090/S0025-5718-1991-1066829-7
[6]   PARABOLIC WAVE-EQUATION APPROXIMATIONS IN HETEROGENEOUS MEDIA [J].
BAMBERGER, A ;
ENGQUIST, B ;
HALPERN, L ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :99-128
[7]   A sloping boundary condition for efficient PE calculations in range-dependent acoustic media [J].
Brooke, GH ;
Thomson, DJ ;
Wort, PM .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (01) :11-27
[8]   THE ROTATED PARABOLIC EQUATION AND SLOPING OCEAN BOTTOMS [J].
COLLINS, MD .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 87 (03) :1035-1037
[9]   A HIGHER-ORDER ENERGY-CONSERVING PARABOLIC EQUATION FOR RANGE-DEPENDENT OCEAN DEPTH, SOUND SPEED, AND DENSITY [J].
COLLINS, MD ;
WESTWOOD, EK .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1991, 89 (03) :1068-1075
[10]   Finite element methods for the parabolic equation with interfaces [J].
Dougalis, VA ;
Kampanis, NA .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (01) :55-88