Private-Key Fully Homomorphic Encryption for Private Classification

被引:4
作者
Wood, Alexander [1 ,2 ,3 ,4 ]
Shpilrain, Vladimir [5 ,6 ]
Najarian, Kayvan [2 ,3 ,4 ]
Mostashari, Ali [7 ]
Kahrobaei, Delaram [1 ,8 ]
机构
[1] CUNY, Grad Ctr, Dept Comp Sci, New York, NY 10016 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Emergency Med Dept, Ann Arbor, MI 48109 USA
[5] CUNY, Grad Ctr, Dept Math, New York, NY USA
[6] CUNY City Coll, Dept Math, New York, NY USA
[7] LifeNome Inc, New York, NY USA
[8] NYU, Tandon Sch Engn, Dept Comp Sci, New York, NY USA
来源
MATHEMATICAL SOFTWARE - ICMS 2018 | 2018年 / 10931卷
关键词
Fully homomorphic encryption; Data privacy; Machine learning;
D O I
10.1007/978-3-319-96418-8_56
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fully homomophic encryption enables private computation over sensitive data, such as medical data, via potentially quantum-safe primitives. In this extended abstract we provide an overview of an implementation of a private-key fully homomorphic encryption scheme in a protocol for private Naive Bayes classification. This protocol allows a data owner to privately classify her data point without direct access to the learned model. We implement this protocol by performing privacy-preserving classification of breast cancer data as benign or malignant.
引用
收藏
页码:475 / 481
页数:7
相关论文
共 27 条
  • [1] Alperin-Sheriff J, 2014, LECT NOTES COMPUT SC, V8616, P297, DOI 10.1007/978-3-662-44371-2_17
  • [2] Privacy-Preserving Processing of Raw Genomic Data
    Ayday, Erman
    Raisaro, Jean Louis
    Hengartner, Urs
    Molyneaux, Adam
    Hubaux, Jean-Pierre
    [J]. DATA PRIVACY MANAGEMENT AND AUTONOMOUS SPONTANEOUS SECURITY, DPM 2013, 2014, 8247 : 133 - 147
  • [3] Bos Joppe W., 2013, Cryptography and Coding. 14th IMA International Conference, IMACC 2013. Proceedings: LNCS 8308, P45, DOI 10.1007/978-3-642-45239-0_4
  • [4] Machine Learning Classification over Encrypted Data
    Bost, Raphael
    Popa, Raluca Ada
    Tu, Stephen
    Goldwasser, Shafi
    [J]. 22ND ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2015), 2015,
  • [5] Brakerski Zvika, 2014, ACM Transactions on Computation Theory, V6, DOI 10.1145/2633600
  • [6] Brakerski Z, 2011, LECT NOTES COMPUT SC, V6841, P505, DOI 10.1007/978-3-642-22792-9_29
  • [7] Efficient Fully Homomorphic Encryption from (Standard) LWE
    Brakerski, Zvika
    Vaikuntanathan, Vinod
    [J]. 2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 97 - 106
  • [8] Bruekers F., 2008, TECHNICAL REPORT
  • [9] Homomorphic Computation of Edit Distance
    Cheon, Jung Hee
    Kim, Miran
    Lauter, Kristin
    [J]. FINANCIAL CRYPTOGRAPHY AND DATA SECURITY (FC 2015), 2015, 8976 : 194 - 212
  • [10] Dowlin N, 2016, PR MACH LEARN RES, V48