Synchronization and stochastic resonance of noise-induced jumps in a bistable system

被引:0
作者
Kovaleva, A [1 ]
机构
[1] Russian Acad Sci, Mech Engn Res Inst, Moscow 101990, Russia
来源
2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We determine stochastic resonance and locking conditions for noise-induced interwell jumps in a bistable system subject to a weak periodic signal. We demonstrate that the phenomena of stochastic resonance and synchronization are not contradictory and can be interpreted as the limit cases of hopping dynamics. The boundary between the domains of synchronization and stochastic resonance is determined as a function of system's parameters. An extension to systems affected by coloured noise is discussed.
引用
收藏
页码:372 / 377
页数:6
相关论文
共 14 条
  • [1] BROOMHEAD DS, 2000, STOCHASTIC CHAOTIC D
  • [2] FREIDLIN M. I., 2012, Random Perturbations of Dynamical Systems, Grundlehren der mathematischen Wissenschaften, V3rd
  • [3] Quasi-deterministic approximation, metastability and stochastic resonance
    Freidlin, MI
    [J]. PHYSICA D, 2000, 137 (3-4): : 333 - 352
  • [4] Stochastic resonance
    Gammaitoni, L
    Hanggi, P
    Jung, P
    Marchesoni, F
    [J]. REVIEWS OF MODERN PHYSICS, 1998, 70 (01) : 223 - 287
  • [5] Gardiner C. W., 1983, HDB STOCHASTIC METHO
  • [6] Guckenheimer J, 1986, NONLINEAR OSCILLATIO
  • [7] Stochastic resonance in two-state Markov chains
    Imkeller, P
    Pavlyukevich, I
    [J]. ARCHIV DER MATHEMATIK, 2001, 77 (01) : 107 - 115
  • [8] IMKELLER P, 2000, STOCHASTIC CLIMATIC, P1
  • [9] KNAPP R, 1989, DISORDER NONLINEARIT, P2
  • [10] KOVALEVA AS, 1993, PMM-J APPL MATH MEC+, V57, P237