Preparing proton exchange membranes via incorporating silica-based nanoscale ionic materials for the enhanced proton conductivity

被引:19
|
作者
Geng, Haobo [1 ,2 ]
Wu, Hong [1 ,2 ,3 ]
Li, Jinzhao [1 ,2 ]
He, Xueyi [1 ,2 ]
Shi, Benbing [1 ,2 ]
Fan, Chunyang [1 ,2 ]
Qiu, Ming [1 ,2 ]
Mao, Xunli [1 ,2 ]
Jiang, Zhongyi [1 ,2 ,4 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Membrane Sci & Desalinat Technol, Tianjin 300072, Peoples R China
[4] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
FUNCTIONALIZED TITANIA; FUEL-CELLS; POLY(VINYL ALCOHOL); HYBRID MEMBRANES; LOW HUMIDITY; NAFION; TRANSPORT; PERFORMANCE; FABRICATION; KETONE;
D O I
10.1016/j.ssi.2020.115294
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membranes (PEMs) have triggered growing attention in energy-related applications due to their fundamental and technological significance. In this work, silica-based nanoscale ionic materials (NIMs-SiO2) were synthesized and incorporated into sulfonated poly (ether-ether-ketone) (SPEEK) to prepare nanocomposite membranes. NIMs-SiO2 could not only provide extra proton transfer sites, but also enhanced the hydrophilicity of the membranes, leading to decrease of the activation energy. The nano-scale size (7 nm) and the functional groups of the NIMs-SiO2 lead to good interfacial adhesion with SPEEK, improving the mechanical properties of the membranes. Consequently, SPEEK/NIMs-SiO2 (5) exhibited the highest proton conductivity and peak power density, which were 1.92 and 1.51 folds higher than the pristine SPEEK membranes, respectively. The results showed the nanocomposite membranes had potential as alternative proton exchange membranes for corresponding devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Porous proton exchange membranes based on sulfonated poly (arylene ether ketone)/polylactide block copolymers for enhanced proton conductivity and dimensional stability
    Mong, Anh Le
    Kim, Dukjoon
    SOLID STATE IONICS, 2016, 290 : 62 - 70
  • [32] Toward Anhydrous Proton Conductivity Based on Imidazole Functionalized Mesoporous Silica/Nafion Composite Membranes
    Amiinu, Ibrahim Saana
    Li, Wei
    Wang, Guangjin
    Tu, Zhengkai
    Tang, Haolin
    Pan, Mu
    Zhang, Haining
    ELECTROCHIMICA ACTA, 2015, 160 : 185 - 194
  • [33] Enhanced Proton Conductivity from Phosphoric Acid-Incorporated 3D Polyacrylamide-Graft-Starch Hydrogel Materials for High-Temperature Proton Exchange Membranes
    Qin, Qi
    Tang, Qunwei
    He, Benlin
    Chen, Haiyan
    Yuan, Shuangshuang
    Wang, Xin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (16)
  • [34] Improved proton conductivity in MoS2-NiO-Co3O4 filled chitosan based proton exchange membranes for fuel cell applications
    Swaghatha, A. I. Anu Karthi
    Cindrella, L.
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [35] Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes
    Yu, Di
    Cui, Yinghe
    Wang, Shuang
    Wang, Xiaodong
    Yong, Zhipeng
    Sun, Han
    Wang, Xiaorui
    Li, Chenglong
    Pan, Feng
    Wang, Zhe
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (24) : 9023 - 9036
  • [36] High proton-conducting phosphine oxide- and pyridinyl-based fluoro-sulfonated proton exchange membranes with enhanced chemical stability
    Ghanti, Bholanath
    Kamble, Riddhi
    Komber, Hartmut
    Voit, Brigitte
    Banerjee, Susanta
    JOURNAL OF POWER SOURCES, 2025, 631
  • [37] Enhanced proton conductivity and dimensional stability of proton exchange membrane based on sulfonated poly(arylene ether sulfone) and graphene oxide
    Chen, RiMing
    Xu, FuZhong
    Fu, Kang
    Zhou, Jingling
    Shi, Quan
    Xue, Chang
    Lyu, YingChun
    Guo, BingKun
    Li, Guang
    MATERIALS RESEARCH BULLETIN, 2018, 103 : 142 - 149
  • [38] Trifluoromethanesulfonimide-based hygroscopic semi-interpenetrating polymer network for enhanced proton conductivity of nafion-based proton exchange membranes at low humidity
    Sun, Shipeng
    Ling, Li
    Xiong, Yong
    Zhang, Yun
    Li, Zhen
    JOURNAL OF MEMBRANE SCIENCE, 2020, 612 (612)
  • [39] Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity
    Hu, Meishao
    Li, Tianyun
    Neelakandan, Sivasubramaniyan
    Wang, Lei
    Chen, Yongming
    JOURNAL OF MEMBRANE SCIENCE, 2020, 593 (593)
  • [40] Enhanced proton conductivity and stability of polybenzimidazole membranes at low phosphoric acid doping levels via constructing efficient proton transport pathways with ionic liquids and carbon nanotubes
    Xiao, Yiming
    Shen, Xiaoyu
    Sun, Ranxin
    Wang, Songbo
    Xiang, Jun
    Zhang, Lei
    Cheng, Penggao
    Du, Xinjun
    Yin, Zhen
    Tang, Na
    JOURNAL OF POWER SOURCES, 2022, 543