On Nonlocal Models of Kulish-Sklyanin Type and Generalized Fourier Transforms

被引:14
作者
Gerdjikov, V. S. [1 ,2 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tsarigradsko Chausee, BU-1784 Sofia, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
来源
ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS | 2017年 / 681卷
关键词
BOSE-EINSTEIN CONDENSATE; SIMPLE LIE-ALGEBRAS; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; PT-SYMMETRY; HERMITICITY;
D O I
10.1007/978-3-319-49544-6_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A special class of multicomponent NLS equations, generalizing the vector NLS and related to the BD. I-type symmetric are shown to be integrable through the inverse scattering method (ISM). The corresponding fundamental analytic solutions are constructing thus reducing the inverse scattering problem to a Riemann-Hilbert problem. We introduce the minimal sets of scattering data I which determines uniquely the scattering matrix and the potential Q of the Lax operator. The elements of I can be viewed as the expansion coefficients of Q over the 'squared solutions' that are natural generalizations of the standard exponentials. Thus we demonstrate that the mapping I -> Q is a generalized Fourier transform. Special attention is paid to two special representatives of this MNLS with three-component and five components which describe spinor (F = 1 and F = 2, respectively) Bose-Einstein condensates.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 45 条
[1]   Wave collapse in a class of nonlocal nonlinear Schrodinger equations [J].
Ablowitz, M ;
Bakirtas, I ;
Ilan, B .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 207 (3-4) :230-253
[2]  
Ablowitz M. J., 2015, INVERSE SCA IN PRESS
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[5]  
[Anonymous], 1979, Funkc. Anal. Prilozh
[6]  
[Anonymous], 1975, Funct. Anal. Appl.
[7]  
[Anonymous], 1984, THEORY SOLITONS INVE
[8]  
Barashenkov I. V., ARXIV151106633
[9]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[10]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229