Two-dimensional spintronic circuit architectures on large scale graphene

被引:34
|
作者
Khokhriakov, Dmitrii [1 ]
Karpiak, Bogdan [1 ]
Hoque, Anamul Md [1 ]
Dash, Saroj P. [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Graphene; Spin circuit; Spin device architecture; Spin transport; Hanle spin precession; ELECTRICAL DETECTION; SPIN PRECESSION; TRANSPORT; SINGLE; HETEROSTRUCTURES; LOGIC;
D O I
10.1016/j.carbon.2020.01.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid state electronics based on utilizing the electron spin degree of freedom for storing and processing information can pave the way for next-generation spin-based computing. However, the realization of spin communication between multiple devices in complex spin circuit geometries, essential for practical applications, is still lacking. Here, we demonstrate the spin current propagation in two-dimensional (2D) circuit architectures consisting of multiple devices and configurations using a large area CVD graphene on SiO2/Si substrate at room temperature. Taking advantage of the significant spin transport distance reaching 34 mu m in commercially available wafer-scale graphene grown on Cu foil, we demonstrate that the spin current can be effectively communicated between the magnetic memory elements in graphene channels within 2D circuits of Y-junction and hexa-arm architectures. We further show that by designing graphene channels and ferromagnetic elements at different geometrical angles, the symmetric and antisymmetric components of the Hanle spin precession signal can be remarkably controlled. These findings lay the foundation for the design of complex 2D spintronic circuits, which can be integrated into efficient electronics based on the transport of pure spin currents. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:892 / 899
页数:8
相关论文
共 50 条
  • [1] Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics
    Yu, Lili
    Lee, Yi-Hsien
    Ling, Xi
    Santos, Elton J. G.
    Shin, Yong Cheol
    Lin, Yuxuan
    Dubey, Madan
    Kaxiras, Efthimios
    Kong, Jing
    Wang, Han
    Palacios, Tomas
    NANO LETTERS, 2014, 14 (06) : 3055 - 3063
  • [2] Three-dimensional architectures constructed using two-dimensional nanosheets
    Li, Haoyi
    Wang, Xun
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (12) : 1792 - 1799
  • [3] Spintronic devices based on topological and two-dimensional materials
    Jiang, Long-Xing
    Li, Qing-Chao
    Xu, Zhang
    Li, Jing-Feng
    Jing, Zhang
    Zu-Xin, Chen
    Min, Zeng
    Hao, Wu
    ACTA PHYSICA SINICA, 2024, 73 (01)
  • [4] Van der Waals Magnetic Electrode Transfer for Two-Dimensional Spintronic Devices
    Luo, Zhongzhong
    Yu, Zhihao
    Lu, Xiangqian
    Niu, Wei
    Yu, Yao
    Yao, Yu
    Tian, Fuguo
    Tan, Chee Leong
    Sun, Huabin
    Gao, Li
    Qin, Wei
    Xu, Yong
    Zhao, Qiang
    Song, Xiang-Xiang
    NANO LETTERS, 2024, 24 (20) : 6183 - 6191
  • [5] Two-Dimensional Materials for Electronic, Photonic, Spintronic and Sensing Applications
    Koester, Steven J.
    2016 74TH ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2016,
  • [6] Recent Advances in Two-Dimensional Spintronics
    Hu, Guojing
    Xiang, Bin
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [7] Theory of charged impurity scattering in two-dimensional graphene
    Adam, S.
    Hwang, E. H.
    Rossi, E.
    Das Sarma, S.
    SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) : 1072 - 1079
  • [8] Recent Advances in Two-Dimensional Materials beyond Graphene
    Bhimanapati, Ganesh R.
    Lin, Zhong
    Meunier, Vincent
    Jung, Yeonwoong
    Cha, Judy
    Das, Saptarshi
    Xiao, Di
    Son, Youngwoo
    Strano, Michael S.
    Cooper, Valentino R.
    Liang, Liangbo
    Louie, Steven G.
    Ringe, Emilie
    Zhou, Wu
    Kim, Steve S.
    Naik, Rajesh R.
    Sumpter, Bobby G.
    Terrones, Humberto
    Xia, Fengnian
    Wang, Yeliang
    Zhu, Jun
    Akinwande, Deji
    Alem, Nasim
    Schuller, Jon A.
    Schaak, Raymond E.
    Terrones, Mauricio
    Robinson, Joshua A.
    ACS NANO, 2015, 9 (12) : 11509 - 11539
  • [9] Engineering artificial graphene in a two-dimensional electron gas
    Gibertini, Marco
    Singha, Achintya
    Pellegrini, Vittorio
    Polini, Marco
    Vignale, Giovanni
    Pinczuk, Aron
    Pfeiffer, Loren N.
    West, Ken W.
    PHYSICAL REVIEW B, 2009, 79 (24):
  • [10] Two-dimensional graphene electronics: current status and prospects
    Ratnikov, P. V.
    Silin, A. P.
    PHYSICS-USPEKHI, 2018, 61 (12) : 1139 - 1174