The design and development of a high performance hydrogenation catalyst is an important challenge in the utilization of CO2 as resources. The catalytic performances of the supported catalyst can be effectively improved through the interaction between the active components and the support materials. The obtained results demonstrated that the oxygen vacancies and active Cu-0 species as active sites can be formed in the CeO2-delta-catalysts by the H-2 reduction at 400 degrees C. The synergistic effect of the surface oxygen vacancies and active Cu-0 species, and Cu-0-CeO2-delta interface structure enhanced catalytic activity of the supported xCu/CeO2-delta catalysts. The electronic effect between Cu and Ce species boosted the adsorption and activation performances of the reactant CO2 and H-2 molecules on the corresponding Cu/CeO2-delta catalyst. The Cu/CeO2-delta catalyst with the Cu loading of 8.0 wt% exhibited the highest CO2 conversion rate in the RWGS reaction, reaching 1.38 mmol.g(cat)(-1) min(-1) at 400 degrees C. Its excellent catalytic performance in the RWGS reaction was related to the complete synergistic interaction between the active species via Ce3+-square-Cu-0 (square: oxygen vacancy). The Cu/CeO2-delta composite material is a superior catalyst for the RWGS reaction because of its high CO2 conversion and 100% CO selectivity. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机构:
Changwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Lee, Yong-Hee
Kim, Hak-Min
论文数: 0引用数: 0
h-index: 0
机构:
Changwon Natl Univ, Ind Technol Res Ctr, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Kim, Hak-Min
Jeong, Chang-Hoon
论文数: 0引用数: 0
h-index: 0
机构:
Changwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Jeong, Chang-Hoon
Jeong, Dae-Woon
论文数: 0引用数: 0
h-index: 0
机构:
Changwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Changwon Natl Univ, Sch Civil Environm & Chem Engn, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
机构:
Changwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Lee, Yong-Hee
Kim, Hak-Min
论文数: 0引用数: 0
h-index: 0
机构:
Changwon Natl Univ, Ind Technol Res Ctr, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Kim, Hak-Min
Jeong, Chang-Hoon
论文数: 0引用数: 0
h-index: 0
机构:
Changwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Jeong, Chang-Hoon
Jeong, Dae-Woon
论文数: 0引用数: 0
h-index: 0
机构:
Changwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea
Changwon Natl Univ, Sch Civil Environm & Chem Engn, Chang Won, South KoreaChangwon Natl Univ, Dept Smart Environm Energy Engn, Chang Won, South Korea