Supported mesoporous Cu/CeO2-δ catalyst for CO2 reverse water-gas shift reaction to syngas

被引:60
|
作者
Zhou, Guilin [1 ,2 ]
Xie, Fengqiong [1 ]
Deng, Lidan [1 ]
Zhang, Guizhi [1 ]
Xie, Hongmei [1 ]
机构
[1] Chongqing Technol & Business Univ, Dept Chem Engn, Chongqing 400067, Peoples R China
[2] Minist Educ, Engn Res Ctr Waste Oil Recovery Technol & Equipme, Chongqing 400067, Peoples R China
关键词
Mesoporous Cu/CeO2-delta catalyst; Cu-0-CeO2-delta interface structure; Synergistic effect; RWGS reaction; CO2; CO; CUO-CEO2; CATALYSTS; HIGH-PERFORMANCE; CEO2; REDUCTION; CUO/CEO2; OXIDATION; OXIDES; COPRECIPITATION; HYDROGENATION; COMBUSTION;
D O I
10.1016/j.ijhydene.2020.02.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and development of a high performance hydrogenation catalyst is an important challenge in the utilization of CO2 as resources. The catalytic performances of the supported catalyst can be effectively improved through the interaction between the active components and the support materials. The obtained results demonstrated that the oxygen vacancies and active Cu-0 species as active sites can be formed in the CeO2-delta-catalysts by the H-2 reduction at 400 degrees C. The synergistic effect of the surface oxygen vacancies and active Cu-0 species, and Cu-0-CeO2-delta interface structure enhanced catalytic activity of the supported xCu/CeO2-delta catalysts. The electronic effect between Cu and Ce species boosted the adsorption and activation performances of the reactant CO2 and H-2 molecules on the corresponding Cu/CeO2-delta catalyst. The Cu/CeO2-delta catalyst with the Cu loading of 8.0 wt% exhibited the highest CO2 conversion rate in the RWGS reaction, reaching 1.38 mmol.g(cat)(-1) min(-1) at 400 degrees C. Its excellent catalytic performance in the RWGS reaction was related to the complete synergistic interaction between the active species via Ce3+-square-Cu-0 (square: oxygen vacancy). The Cu/CeO2-delta composite material is a superior catalyst for the RWGS reaction because of its high CO2 conversion and 100% CO selectivity. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11380 / 11393
页数:14
相关论文
共 50 条
  • [21] Single-Atom Platinum Catalyst for Efficient CO2 Conversion via Reverse Water Gas Shift Reaction
    He, Yulian
    Huang, Dahong
    MOLECULES, 2023, 28 (18):
  • [22] Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water-Gas Shift Reaction in Syngas Conversion
    Tan, Minghui
    Tian, Sha
    Zhang, Tao
    Wang, Kangzhou
    Xiao, Liwei
    Liang, Jiaming
    Ma, Qingxiang
    Yang, Guohui
    Tsubaki, Noritatsu
    Tan, Yisheng
    ACS CATALYSIS, 2021, 11 (08) : 4633 - 4643
  • [23] Transition-Metal-Doped CeO2 for the Reverse Water-Gas Shift Reaction: An Experimental and Theoretical Study on CO2 Adsorption and Surface Vacancy Effects
    Yu, Yue
    Xia, Wenxuan
    Yu, Aiping
    Simakov, David S. A.
    Ricardez-Sandoval, Luis
    CHEMSUSCHEM, 2025, 18 (02)
  • [24] Optimized Pt-Co Alloy Nanoparticles for Reverse Water-Gas Shift Activation of CO2
    Szamosvolgyi, Akos
    Pito, Adam
    Efremova, Anastasiia
    Baan, Kornelia
    Kutus, Bence
    Suresh, Mutyala
    Sapi, Andras
    Szenti, Imre
    Kiss, Janos
    Kolonits, Tamas
    Fogarassy, Zsolt
    Pecz, Bela
    Kukovecz, Akos
    Konya, Zoltan
    ACS APPLIED NANO MATERIALS, 2024, 7 (09) : 9968 - 9977
  • [25] Integrated CO2 capture and reverse water-gas shift reaction over CeO2-CaO dual functional materials
    Sun, Shuzhuang
    Zhang, Chen
    Chen, Sining
    Zhao, Xiaotong
    Wang, Yuanyuan
    Xu, Shaojun
    Wu, Chunfei
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (04):
  • [26] Carbon stabilised saponite supported transition metal-alloy catalysts for chemical CO2 utilisation via reverse water-gas shift reaction
    Nityashree, N.
    Price, C. A. H.
    Pastor-Perez, L.
    Manohara, G. V.
    Garcia, S.
    Maroto-Valer, M. M.
    Reina, T. R.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 261 (261)
  • [27] Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction
    Wang Luhui
    Liu Hui
    Liu Yuan
    Chen Ying
    Yang Shuqing
    JOURNAL OF RARE EARTHS, 2013, 31 (10) : 969 - 974
  • [28] Understanding CO2 reduction via reverse water-gas shift triggered by electromagnetic induction at moderate condition
    Chen, Jin
    Su, Shuangyong
    Wang, Chunqi
    Li, Qiang
    Wang, Huiling
    Xu, Wenjian
    Li, Xiaolan
    Jia, Hongpeng
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [29] Synergetic effect of Cu active sites and oxygen vacancies in Cu/CeO2-ZrO2 for the water-gas shift reaction
    Hu, Yuanwu
    Wang, Na
    Zhou, Zhiming
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (07) : 2518 - 2528
  • [30] Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: Investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS
    Zhang, Yudong
    Liang, Long
    Chen, Ziyang
    Wen, Jinjun
    Zhong, Wen
    Zou, Sibei
    Fu, Mingli
    Chen, Limin
    Ye, Daiqi
    APPLIED SURFACE SCIENCE, 2020, 516