Comparison between PSO and OLS for NARX Parameter Estimation of a DC Motor

被引:0
作者
Mohamad, M. S. A. [1 ]
Yassin, I. M. [1 ]
Zabidi, A. [1 ]
Taib, M. N. [1 ]
Adnan, R. [1 ]
机构
[1] Univ Teknol Mara, Fac Elect Engn, Shah Alam, Malaysia
来源
2013 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS & APPLICATIONS (ISIEA 2013) | 2013年
关键词
Nonlinear System Identification; NARX; DC Motor;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent works suggest that the Particle Swarm Optimization (PSO) algorithm is a highly-efficient optimization technique for structure selection of NARMAX and its derivative models. This research extends those findings by proposing PSO for parameter estimation of a Nonlinear Auto-Regressive with Exogenous (NARX) model for a Direct Current (DC) motor. The proposed method was compared to the established Orthogonal Least Squares (OLS) method. The findings indicate that PSO was comparable to OLS in solving the Least Squares (LS) parameter estimation problem posed in the NARX model.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 47 条
  • [31] Performance Analysis of Disturbance Estimation Techniques for Robust Position Control of DC Motor
    Subhash S. Sankeshwari
    Rajan H. Chille
    International Journal of Control, Automation and Systems, 2020, 18 : 486 - 494
  • [32] Single Parameter Fault Identification Technique for DC Motor through Wavelet Analysis and Fuzzy Logic
    Winston, D. Prince
    Saravanan, M.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013, 8 (05) : 1049 - 1055
  • [33] Fractional-Order P2Dβ Controller for Uncertain Parameter DC Motor
    Mitkowski, Wojciech
    Oprzedkiewicz, Krzysztof
    ADVANCES IN THE THEORY AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2013, 257 : 249 - 259
  • [34] Speed Control of DC Motor by Using Neural Network Parameter Tuner for PI-controller
    Naung, Ye
    Anatolii, Schagin
    Lin, Ye Htet
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 2152 - 2156
  • [35] Electricity Spot Prices Forecasting for MIBEL by using Deep Learning: a comparison between NAR, NARX and LSTM networks
    De Simon-Martin, Miguel
    Bracco, Stefano
    Rosales-Asensio, Enrique
    Piazza, Giorgio
    Delfino, Federico
    Giribone, Pier Giuseppe
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [36] The Significance of Prioritized Weight in WTRI based Fitness Function on PSO Algorithm Under Different Range of Moment of Inertia of a DC Motor
    Aziz, Mohd Azri Abdul
    Taib, Mohd Nasir
    Adnan, Ramli
    2016 IEEE CONFERENCE ON SYSTEMS, PROCESS AND CONTROL (ICSPC), 2016, : 242 - 247
  • [37] Estimation of Parameters and Tuning of a Speed PI of Permanent Magnet DC Motor Using Differential Evolution
    Bosco, Maycon Chimini
    Guedes, Jacqueline Jordan
    Castoldi, Marcelo Favoretto
    Goedtel, Alessandro
    Pires da Silva, Emerson Ravazzi
    Sanches Buzachero, Luiz Francisco
    2017 IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE (IEMDC), 2017,
  • [38] Robust state and fault estimation for linear descriptor stochastic systems with disturbances: a DC motor application
    Bessaoudi, Talel
    Ben Hmida, Faycal
    Hsieh, Chien-Shu
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (05) : 601 - 610
  • [39] Comparison of PI and FOPI Based Voltage and Current Controlled DC Motor Drive System
    Usman, Hafiz M.
    Haddad, Abdel Gafoor
    Rehman, Habibur
    Mukhopadhyay, Shayok
    2019 INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP) & 2019 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2019, : 139 - 142
  • [40] Modeling and Simulation of Parameter Self-tuning Fuzzy PID Controller for DC Motor Speed Control System
    Xue, Chi
    Zhu, Hui
    Yu, Biao
    MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2012, 195-196 : 1003 - +