Comparison between PSO and OLS for NARX Parameter Estimation of a DC Motor

被引:0
|
作者
Mohamad, M. S. A. [1 ]
Yassin, I. M. [1 ]
Zabidi, A. [1 ]
Taib, M. N. [1 ]
Adnan, R. [1 ]
机构
[1] Univ Teknol Mara, Fac Elect Engn, Shah Alam, Malaysia
来源
2013 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS & APPLICATIONS (ISIEA 2013) | 2013年
关键词
Nonlinear System Identification; NARX; DC Motor;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent works suggest that the Particle Swarm Optimization (PSO) algorithm is a highly-efficient optimization technique for structure selection of NARMAX and its derivative models. This research extends those findings by proposing PSO for parameter estimation of a Nonlinear Auto-Regressive with Exogenous (NARX) model for a Direct Current (DC) motor. The proposed method was compared to the established Orthogonal Least Squares (OLS) method. The findings indicate that PSO was comparable to OLS in solving the Least Squares (LS) parameter estimation problem posed in the NARX model.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 47 条
  • [1] PARAMETER ESTIMATION OF DC MOTOR
    Pitrenas, Aurelijus
    Petrovas, Andrius
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL TECHNOLOGIES, 2013, : 140 - 143
  • [2] Comparison between NARX Parameter Estimation Methods with Binary Particle Swarm Optimization-based Structure Selection Method
    Yassin, Ihsan M.
    Taib, Mohd N.
    Zabidi, Azlee
    Abu Hassan, Hasliza
    Abidin, Husna Zainol
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [3] Structure detection and parameter estimation for NARX models in a unified EM framework
    Baldacchino, Tara
    Anderson, Sean R.
    Kadirkamanathan, Visakan
    AUTOMATICA, 2012, 48 (05) : 857 - 865
  • [4] Application of Recursive Methods for Parameter Estimation in Adaptive Control of DC Motor
    Grigorov, Ivan, V
    Atanasov, Nasko R.
    Zhekov, Zhivko
    Alexandrova, Mariela
    PROCEEDINGS OF THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'17), VOL 2, 2018, 680 : 420 - 427
  • [5] ADAPTIVE PARAMETER ESTIMATION FOR AN ENERGY MODEL OF BELT CONVEYOR WITH DC MOTOR
    Shen, Yanjun
    Xia, Xiaohua
    ASIAN JOURNAL OF CONTROL, 2014, 16 (04) : 1122 - 1132
  • [6] Comparison study of computational parameter values between LRN and NARX in identifying nonlinear systems
    Nordin, Farah Hani
    Nagi, Farrukh Hafiz
    Zainul Abidin, Aidil Azwin
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2013, 21 (04) : 1151 - 1165
  • [7] Parameter identification of a DC motor: An experimental approach
    Saab, SS
    Kaed-Bey, RA
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 981 - 984
  • [8] THE DC MOTOR AS A SYSTEM AFFECTED BY PARAMETER UNCERTAINTIES
    Dulau, Mircea
    Abrudean, Mihail
    Duka, Adrian-Vasile
    Oltean, Stelian-Emilian
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2016, 61 (02): : 131 - 136
  • [9] DC Motor Neuro-Fuzzy Controller Using PSO Identification
    Farid, Ali Moltajaei
    Barakati, S. Masoud
    2014 22ND IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2014, : 1162 - 1167
  • [10] PID Control of DC motor using Particle swarm Optimization (PSO) Algorithm
    Moghaddas, Mahbubeh
    Dastranj, Mohamadreza
    Changizi, Nemat
    Rouhani, Modjtaba
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2010, 1 (04): : 386 - 391