One-Dimensional Schrodinger Operators with Complex Potentials

被引:9
作者
Derezinski, Jan [1 ]
Georgescu, Vladimir [2 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, Pasteura 5, PL-02093 Warsaw, Poland
[2] Univ Cergy Pontoise, Dept Math, F-95000 Cergy Pontoise, France
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 06期
关键词
SELF-ADJOINT EXTENSIONS; DIFFERENTIAL-OPERATORS;
D O I
10.1007/s00023-020-00901-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss realizations of L:=- partial differential x2+V(x) as closed operators on L2]a,b[where V is complex, locally integrable and may have an arbitrary behavior at (finite or infinite) endpoints a and b. The main tool of our analysis is Green's operators, that is, various right inverses of L.
引用
收藏
页码:1947 / 2008
页数:62
相关论文
共 50 条
  • [21] ON THE ONE-DIMENSIONAL HARMONIC OSCILLATOR WITH A SINGULAR PERTURBATION
    Strauss, V. A.
    Winklmeier, M. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2016, 9 (01): : 73 - 91
  • [22] One-dimensional scattering of fermions on $\delta$-impurities
    Guilarte J.M.
    Munoz-Castaneda J.M.
    Santamaría-Sanz L.
    Pirozhenko I.
    Frontiers in Physics, 2019, 7 (JULY)
  • [23] Regularity for Eigenfunctions of Schrodinger Operators
    Ammann, Bernd
    Carvalho, Catarina
    Nistor, Victor
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 101 (01) : 49 - 84
  • [24] Classical and quantum space splitting: the one-dimensional hydrogen atom
    Carrillo-Bernal, M. A.
    Martinez-y-Romero, R. P.
    Nunez-Yepez, H. N.
    Salas-Brito, A. L.
    Solis, Didier A.
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (06)
  • [25] Properties of Root Vector Functions for the One-Dimensional Dirac Operator
    Kurbanov, V. M.
    Ismailova, A. I.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 617 - 620
  • [26] Is Dirichlet the physical boundary condition for the one-dimensional hydrogen atom?
    de Oliveira, Cesar R.
    PHYSICS LETTERS A, 2010, 374 (28) : 2805 - 2808
  • [27] Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
    Gadella, Manuel
    Hernandez-Munoz, Jose
    Nieto, Luis Miguel
    San Millan, Carlos
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 19
  • [28] Schrodinger operators with interactions on unbounded hypersurfaces
    Rabinovich, Vladimir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (15) : 4981 - 4998
  • [29] Schrodinger operators with nonlocal point interactions
    Albeverio, Sergio
    Nizhnik, Leonid
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 884 - 895
  • [30] Inequalities and separation for covariant Schrodinger operators
    Milatovic, Ognjen
    Saratchandran, Hemanth
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 215 - 222