Coupling novel Li7TaO6 surface buffering with bulk Ta-doping to achieve long-life sulfide-based all-solid-state lithium batteries

被引:34
作者
Shi, Jie [1 ]
Ma, Zhihui [1 ]
Han, Kun [1 ]
Wan, Qi [2 ]
Wu, Di [1 ]
Qu, Xuanhui [1 ]
Li, Ping [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Mat & Chem, Mianyang 621010, Sichuan, Peoples R China
基金
北京市自然科学基金;
关键词
NI-RICH; ELECTROCHEMICAL PROPERTIES; INTERFACE STABILITY; CATHODE; PERFORMANCE; ELECTROLYTE; LICOO2; NCM;
D O I
10.1039/d2ta06703j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the interfacial stability between layered oxide cathodes and sulfide electrolytes (SEs) and the structural stability of the cathode active material is critical for developing high-performance all-solid-state lithium batteries (ASSLBs). Coating and bulk doping are considered effective approaches; however, creating innovative buffer coatings and bulk doping using economical and scalable fabrication processes to address these issues is a comprehensive and challenging task. This article firstly proposes a coupling design of new Li7TaO6 (L7TaO) surface buffer coating with bulk Ta-doping for LiNi0.8Co0.1Mn0.1O2 (NCM811) by a simple one-step in situ synthesis method to tackle the interfacial issues of ASSLBs using Li6PS5Cl (LPSCl) electrolyte. The L7TaO buffer coating can not only promote interfacial Li-ion transport, but also effectively suppresses interfacial side reactions and reduces interfacial impedance. Simultaneously, Ta-doping into NCM811 reduces lithium-nickel mixing, thus boosting its structural stability. Therefore, the designed ASSLBs employing the NCM811 cathode coupled L7TaO-1 wt% buffer coating with bulk Ta-doping exhibit a high initial discharge capacity of 203.02 mA h g(-1) with initial coulombic efficiency of 85.42% at 0.1C and remarkable cycling stability up to 5650 cycles with decay rate per cycle of 0.0069% at 1C.
引用
收藏
页码:21336 / 21348
页数:13
相关论文
共 74 条
[21]   Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte [J].
Li, Xuelei ;
Sun, Qifang ;
Wang, Zhengyu ;
Song, Dawei ;
Zhang, Hongzhou ;
Shi, Xixi ;
Li, Chunliang ;
Zhang, Lianqi ;
Zhu, Lingyun .
JOURNAL OF POWER SOURCES, 2020, 456
[22]   Insight into the structural evolution and thermal behavior of LiNi0.8Co0.1Mn0.1O2 cathode under deep charge [J].
Liang, Chen ;
Jiang, Lihua ;
Wei, Zesen ;
Zhang, Wenhua ;
Wang, Qingsong ;
Sun, Jinhua .
JOURNAL OF ENERGY CHEMISTRY, 2022, 65 :424-432
[23]   Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries [J].
Lin, Feng ;
Markus, Isaac M. ;
Nordlund, Dennis ;
Weng, Tsu-Chien ;
Asta, Mark D. ;
Xin, Huolin L. ;
Doeff, Marca M. .
NATURE COMMUNICATIONS, 2014, 5 :3529
[24]   Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy [J].
Liu, Tongchao ;
Yu, Lei ;
Lu, Jun ;
Zhou, Tao ;
Huang, Xiaojing ;
Cai, Zhonghou ;
Dai, Alvin ;
Gim, Jihyeon ;
Ren, Yang ;
Xiao, Xianghui ;
Holt, Martin, V ;
Chu, Yong S. ;
Arslan, Ilke ;
Wen, Jianguo ;
Amine, Khalil .
NATURE COMMUNICATIONS, 2021, 12 (01)
[25]   Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond [J].
Lou, Shuaifeng ;
Zhang, Fang ;
Fu, Chuankai ;
Chen, Ming ;
Ma, Yulin ;
Yin, Geping ;
Wang, Jiajun .
ADVANCED MATERIALS, 2021, 33 (06)
[26]   Advanced Nanoparticle Coatings for Stabilizing Layered Ni-Rich Oxide Cathodes in Solid-State Batteries [J].
Ma, Yuan ;
Teo, Jun Hao ;
Walther, Felix ;
Ma, Yanjiao ;
Zhang, Ruizhuo ;
Mazilkin, Andrey ;
Tang, Yushu ;
Goonetilleke, Damian ;
Janek, Juergen ;
Bianchini, Matteo ;
Brezesinski, Torsten .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
[27]   Cycling Performance and Limitations of LiNiO2 in Solid-State Batteries [J].
Ma, Yuan ;
Teo, Jun Hao ;
Kitsche, David ;
Diemant, Thomas ;
Strauss, Florian ;
Ma, Yanjiao ;
Goonetilleke, Damian ;
Janek, Juergen ;
Bianchini, Matteo ;
Brezesinski, Torsten .
ACS ENERGY LETTERS, 2021, 6 (09) :3020-3028
[28]   Synthesis and electrochemical properties of LiNi0.80(Co0.20-xAlx)O2 (x=0.0 and 0.05) cathodes for Li ion rechargeable batteries [J].
Majumder, SB ;
Nieto, S ;
Katiyar, RS .
JOURNAL OF POWER SOURCES, 2006, 154 (01) :262-267
[29]   Semiclassical Boltzmann transport theory for graphene multilayers [J].
Min, Hongki ;
Jain, Parakh ;
Adam, S. ;
Stiles, M. D. .
PHYSICAL REVIEW B, 2011, 83 (19)
[30]   A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials [J].
Min, Kyoungmin ;
Seo, Seung-Woo ;
Song, You Young ;
Lee, Hyo Sug ;
Cho, Eunseog .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (03) :1762-1769