Survey of Key Descriptive References for Chemometric Methods Used for Spectroscopy: Part II

被引:0
作者
Workman, Jerome, Jr. [1 ,2 ,3 ,4 ,5 ]
Mark, Howard [1 ,6 ]
机构
[1] Spectroscopy, Editorial Advisory Board, Iselin, NJ 08830 USA
[2] LCGC, Cranbury, NJ USA
[3] US Natl Univ, La Jolla, CA USA
[4] Unity Sci, Res & Engn, Brookfield, CT USA
[5] Proc Sensors Corp, Brookfield, CT USA
[6] Mark Elect, Consulting Serv, Suffern, NY 10901 USA
关键词
PARTIAL LEAST-SQUARES; PRINCIPAL COMPONENTS REGRESSION; TRANSFORM INFRARED-SPECTROSCOPY; LOCALLY WEIGHTED REGRESSION; MULTIPLE LINEAR-REGRESSION; SUPPORT VECTOR MACHINES; ARTIFICIAL NEURAL-NETWORKS; MULTIVARIATE-ANALYSIS; QUANTITATIVE-ANALYSIS; CLASSIFICATION;
D O I
10.56530/spectroscopy.pj5166a9
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
This article is the second in a series that lists four key explanatory or tutorial references for each of the 29 chemometric methods previously described. The references selected are particularly helpful to explain the use of each method for spectroscopic data. Also included are common computer software platforms used for chemometrics.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 79 条
  • [1] Convolutional neural networks for vibrational spectroscopic data analysis
    Acquarelli, Jacopo
    van Laarhoven, Twan
    Gerretzen, Jan
    Tran, Thanh N.
    Buydens, Lutgarde M. C.
    Marchiori, Elena
    [J]. ANALYTICA CHIMICA ACTA, 2017, 954 : 22 - 31
  • [2] Post-consumer plastic identification using Raman spectroscopy
    Allen, V
    Kalivas, JH
    Rodriguez, RG
    [J]. APPLIED SPECTROSCOPY, 1999, 53 (06) : 672 - 681
  • [3] The N-way Toolbox for MATLAB
    Andersson, CA
    Bro, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (01) : 1 - 4
  • [4] Current trends in laser-induced breakdown spectroscopy: a tutorial review
    Andrade, Daniel Fernandes
    Pereira-Filho, Edenir Rodrigues
    Amarasiriwardena, Dulasiri
    [J]. APPLIED SPECTROSCOPY REVIEWS, 2021, 56 (02) : 98 - 114
  • [5] [Anonymous], 2014, CHEMOMETRICS EXCEL
  • [6] Near-infrared (NIR) spectroscopy for motor oil classification: From discriminant analysis to support vector machines
    Balabin, Roman M.
    Safieva, Ravilya Z.
    Lomakina, Ekaterina I.
    [J]. MICROCHEMICAL JOURNAL, 2011, 98 (01) : 121 - 128
  • [7] Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques
    Balabin, Roman M.
    Safieva, Ravilya Z.
    Lomakina, Ekaterina I.
    [J]. ANALYTICA CHIMICA ACTA, 2010, 671 (1-2) : 27 - 35
  • [8] MULTIVARIATE DETERMINATION OF GLUCOSE IN WHOLE-BLOOD USING PARTIAL LEAST-SQUARES AND ARTIFICIAL NEURAL NETWORKS BASED ON MIDINFRARED SPECTROSCOPY
    BHANDARE, P
    MENDELSON, Y
    PEURA, RA
    JANATSCH, G
    KRUSEJARRES, JD
    MARBACH, R
    HEISE, HM
    [J]. APPLIED SPECTROSCOPY, 1993, 47 (08) : 1214 - 1221
  • [9] A modified random forest approach to improve multi-class classification performance of tobacco leaf grades coupled with NIR spectroscopy
    Bin, Jun
    Ai, Fang-Fang
    Fan, Wei
    Zhou, Ji-Heng
    Yun, Yong-Huan
    Liang, Yi-Zeng
    [J]. RSC ADVANCES, 2016, 6 (36) : 30353 - 30361
  • [10] Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
    Borin, Alessandra
    Ferrao, Marco Flores
    Mello, Cesar
    Maretto, Danilo Althmann
    Poppi, Ronei Jesus
    [J]. ANALYTICA CHIMICA ACTA, 2006, 579 (01) : 25 - 32