Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer

被引:79
作者
Baum, Yuval [1 ,2 ]
Amico, Mirko [1 ,2 ]
Howell, Sean [1 ,2 ]
Hush, Michael [1 ,2 ]
Liuzzi, Maggie [1 ,2 ]
Mundada, Pranav [1 ,2 ]
Merkh, Thomas [1 ,2 ]
Carvalho, Andre R. R. [1 ,2 ]
Biercuk, Michael J. [1 ,2 ,3 ]
机构
[1] Q CTRL, Sydney, NSW, Australia
[2] Q CTRL, Los Angeles, CA 90013 USA
[3] Univ Sydney, ARC Ctr Engn Quantum Syst, Sydney, NSW, Australia
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
关键词
DECOHERENCE; ALGORITHM;
D O I
10.1103/PRXQuantum.2.040324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computers promise tremendous impact across applications-and have shown great strides in hardware engineering-but remain notoriously error prone. Careful design of low-level controls has been shown to compensate for the processes that induce hardware errors, leveraging techniques from optimal and robust control. However, these techniques rely heavily on the availability of highly accurate and detailed physical models, which generally achieve only sufficient representative fidelity for the most simple operations and generic noise modes. In this work, we use deep reinforcement learning to design a universal set of error-robust quantum logic gates in runtime on a superconducting quantum computer, without requiring knowledge of a specific Hamiltonian model of the system, its controls, or its underlying error processes. We experimentally demonstrate that a fully autonomous deep-reinforcement-learning agent can design single qubit gates up to 3x faster than default DRAG operations without additional leakage error, and exhibiting robustness against calibration drifts over weeks. We then show that ZX (-pi/2) operations implemented using the cross-resonance interaction can outperform hardware default gates by over 2x and equivalently exhibit superior calibration-free performance up to 25 days post optimization. We benchmark the performance of deep-reinforcement-learning-derived gates against other black-box optimization techniques, showing that deep reinforcement learning can achieve comparable or marginally superior performance, even with limited hardware access.
引用
收藏
页数:12
相关论文
共 68 条
[61]   Leakage reduction in fast superconducting qubit gates via optimal control [J].
Werninghaus, M. ;
Egger, D. J. ;
Roy, F. ;
Machnes, S. ;
Wilhelm, F. K. ;
Filipp, S. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[62]  
WILLIAMS RJ, 1992, MACH LEARN, V8, P229, DOI 10.1007/BF00992696
[63]   Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits [J].
Wittler, Nicolas ;
Roy, Federico ;
Pack, Kevin ;
Werninghaus, Max ;
Roy, Anurag Saha ;
Egger, Daniel J. ;
Filipp, Stefan ;
Wilhelm, Frank K. ;
Machnes, Shai .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)
[64]   Restoring coherence lost to a slow interacting mesoscopic spin bath [J].
Yao, Wang ;
Liu, Ren-Bao ;
Sham, L. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[65]   Recent advances in quantum machine learning [J].
Zhang, Yao ;
Ni, Qiang .
Quantum Engineering, 2020, 2 (01)
[66]   When does reinforcement learning stand out in quantum control? A comparative study on state preparation [J].
Zhang, Xiao-Ming ;
Wei, Zezhu ;
Asad, Raza ;
Yang, Xu-Chen ;
Wang, Xin .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[67]   Quantum computational advantage using photons [J].
Zhong, Han-Sen ;
Wang, Hui ;
Deng, Yu-Hao ;
Chen, Ming-Cheng ;
Peng, Li-Chao ;
Luo, Yi-Han ;
Qin, Jian ;
Wu, Dian ;
Ding, Xing ;
Hu, Yi ;
Hu, Peng ;
Yang, Xiao-Yan ;
Zhang, Wei-Jun ;
Li, Hao ;
Li, Yuxuan ;
Jiang, Xiao ;
Gan, Lin ;
Yang, Guangwen ;
You, Lixing ;
Wang, Zhen ;
Li, Li ;
Liu, Nai-Le ;
Lu, Chao-Yang ;
Pan, Jian-Wei .
SCIENCE, 2020, 370 (6523) :1460-1463
[68]   Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization [J].
Zhu, CY ;
Byrd, RH ;
Lu, PH ;
Nocedal, J .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (04) :550-560