Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package

被引:125
作者
Roever, Christian [1 ,2 ]
机构
[1] Univ Med Ctr Gottingen, Gottingen, Germany
[2] Georg August Univ, Univ Med Ctr Gottingen, Dept Med Stat, D-37073 Gottingen, Germany
关键词
evidence synthesis; NNHM; between-study heterogeneity; PEDIATRIC LIVER-TRANSPLANTATION; POSTERIOR PREDICTIVE ASSESSMENT; BETWEEN-STUDY HETEROGENEITY; CLINICAL-TRIALS; BASILIXIMAB INDUCTION; PRIOR DISTRIBUTIONS; CONFIDENCE; VARIANCE; MODELS; INFERENCE;
D O I
10.18637/jss.v093.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The random-effects or normal-normal hierarchical model is commonly utilized in a wide range of meta-analysis applications. A Bayesian approach to inference is very attractive in this context, especially when a meta-analysis is based only on few studies. The bayesmeta R package provides readily accessible tools to perform Bayesian meta-analyses and generate plots and summaries, without having to worry about computational details. It allows for flexible prior specification and instant access to the resulting posterior distributions, including prediction and shrinkage estimation, and facilitating for example quick sensitivity checks. The present paper introduces the underlying theory and showcases its usage.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 111 条
[51]  
Higgins J, 2011, GS: Cochrane handbook for systematic reviews of interventions version 5.1.0
[52]   Quantifying heterogeneity in a meta-analysis [J].
Higgins, JPT ;
Thompson, SG .
STATISTICS IN MEDICINE, 2002, 21 (11) :1539-1558
[53]   A re-evaluation of random-effects meta-analysis [J].
Higgins, Julian P. T. ;
Thompson, Simon G. ;
Spiegelhalter, David J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 :137-159
[54]   Robust misinterpretation of confidence intervals [J].
Hoekstra, Rink ;
Morey, Richard D. ;
Rouder, Jeffrey N. ;
Wagenmakers, Eric-Jan .
PSYCHONOMIC BULLETIN & REVIEW, 2014, 21 (05) :1157-1164
[55]  
Hooker, 1976, FDN PROBABILITY THEO, P175, DOI [10.1007/978-94-010-1436-6_6, DOI 10.1007/978-94-010-1436-6_6]
[56]   PRIOR PROBABILITIES [J].
JAYNES, ET .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1968, SSC4 (03) :227-&
[57]   AN INVARIANT FORM FOR THE PRIOR PROBABILITY IN ESTIMATION PROBLEMS [J].
JEFFREYS, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1946, 186 (1007) :453-461
[58]  
Jeffreys H., 1961, THEORY PROBABILITY, V3
[59]   Bayesian posterior predictive p-value of statistical consistency in interlaboratory evaluations [J].
Kacker, Raghu N. ;
Forbes, Alistair ;
Kessel, Ruediger ;
Sommer, Klaus-Dieter .
METROLOGIA, 2008, 45 (05) :512-523
[60]   The selection of prior distributions by formal rules [J].
Kass, RE ;
Wasserman, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :1343-1370