Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package

被引:111
作者
Roever, Christian [1 ,2 ]
机构
[1] Univ Med Ctr Gottingen, Gottingen, Germany
[2] Georg August Univ, Univ Med Ctr Gottingen, Dept Med Stat, D-37073 Gottingen, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 93卷 / 06期
关键词
evidence synthesis; NNHM; between-study heterogeneity; PEDIATRIC LIVER-TRANSPLANTATION; POSTERIOR PREDICTIVE ASSESSMENT; BETWEEN-STUDY HETEROGENEITY; CLINICAL-TRIALS; BASILIXIMAB INDUCTION; PRIOR DISTRIBUTIONS; CONFIDENCE; VARIANCE; MODELS; INFERENCE;
D O I
10.18637/jss.v093.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The random-effects or normal-normal hierarchical model is commonly utilized in a wide range of meta-analysis applications. A Bayesian approach to inference is very attractive in this context, especially when a meta-analysis is based only on few studies. The bayesmeta R package provides readily accessible tools to perform Bayesian meta-analyses and generate plots and summaries, without having to worry about computational details. It allows for flexible prior specification and instant access to the resulting posterior distributions, including prediction and shrinkage estimation, and facilitating for example quick sensitivity checks. The present paper introduces the underlying theory and showcases its usage.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 111 条
[41]   Basiliximab-chimeric anti-IL-2-R monoclonal antibody in pediatric liver transplantation: Comparative study [J].
Gibelli, NEM ;
Pinho-Apezzato, ML ;
Miyatani, HT ;
Maksoud-Filho, JG ;
Silva, MM ;
Ayoub, AAR ;
Santos, MM ;
Velhote, MCP ;
Tannuri, U ;
Maksoud, JG .
TRANSPLANTATION PROCEEDINGS, 2004, 36 (04) :956-957
[42]  
Gilks W.R., 1996, MARKOV CHAIN MONTE C, P1, DOI DOI 10.1201/B14835
[43]   Probabilistic forecasts, calibration and sharpness [J].
Gneiting, Tilmann ;
Balabdaoui, Fadoua ;
Raftery, Adrian E. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :243-268
[44]   Steroid-free, tacrolimus-basiliximab immunosuppression in pediatric liver transplantation: Clinical and pharmacoeconomic study in 50 children [J].
Gras, Jeremie M. ;
Gerkens, Sophie ;
Beguin, Claire ;
Janssen, Magdalena ;
Smets, Francoise ;
Otte, Jean-Bernard ;
Sokal, Etienne ;
Reding, Raymond .
LIVER TRANSPLANTATION, 2008, 14 (04) :469-477
[45]  
Gregory P., 2005, Bayesian logical data analysis for the physical sciences: A comparative approach with mathematica support
[46]   A note on the graphical presentation of prediction intervals in random-effects meta-analyses [J].
Guddat C. ;
Grouven U. ;
Bender R. ;
Skipka G. .
Systematic Reviews, 1 (1)
[47]   meta4diag: Bayesian Bivariate Meta-Analysis of Diagnostic Test Studies for Routine Practice [J].
Guo, Jingyi ;
Riebler, Andrea .
JOURNAL OF STATISTICAL SOFTWARE, 2018, 83 (01)
[48]   A refined method for the meta-analysis of controlled clinical trials with binary outcome [J].
Hartung, J ;
Knapp, G .
STATISTICS IN MEDICINE, 2001, 20 (24) :3875-3889
[49]   On tests of the overall treatment effect in meta-analysis with normally distributed responses [J].
Hartung, J ;
Knapp, G .
STATISTICS IN MEDICINE, 2001, 20 (12) :1771-1782
[50]   Pediatric liver transplantation with daclizumab induction therapy. [J].
Heffron, TG ;
Pillen, T ;
Smallwood, GA ;
Welch, D ;
Oakley, B ;
Romero, R .
TRANSPLANTATION, 2003, 75 (12) :2040-2043