Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits

被引:21
|
作者
Garavito, Johanna [1 ]
Mendoza, Sandra M. [1 ]
Castellanos, Diego A. [2 ]
机构
[1] Univ Nacl Colombia, Fac Ciencias Agr, Postharvest Lab, Carrera 30 45-03, Bogota, Colombia
[2] Univ Nacl Colombia, Inst Ciencia & Tecnol Alimentos, Carrera 30 45-03, Bogota, Colombia
关键词
Polylactic acid; Cellulose; Polyethylene terephthalate; Active packaging; Quality properties; BIOACTIVE COMPOUNDS; GAS-PERMEABILITY; WATER; LIFE; ADSORPTION; TRANSPORT; KINETICS; SORPTION; FILMS;
D O I
10.1016/j.jfoodeng.2021.110761
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Different equilibrium modified atmosphere packaging systems (EMAP) were evaluated for cape gooseberry fruits, including a moisture adsorber. Three packages were used: cellulose trays with a cellulose film, polylactic acid (PLA) trays and film, and polyethylene terephthalate trays (PET) with a film of polypropylene (PP). The packages' configuration, perforations, and amount of moisture adsorber were predefined by modeling the gas transfer in the packaging system. The packaged fruits were stored at 6 degrees C and 75 % RH for 6 weeks. The fruits in the PLA trays without sachets had the maximum shelf life of 42 days, while the fruits in celulose with sachets had a shelf life of 40 days compared to 35 days with the PET/PP trays and 21 days of the control fruits. With similar equilibrium gas levels between the EMAP packages, the higher permeability to water vapor of PLA prevented the formation of condensation with lower dehydration compared to the celulose packages with sachets.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Screening of phytometabolites in oil from cape gooseberry (Physalis peruviana L.) fruit pomace
    Singh, N.
    Dwivedi, D. H.
    Maji, S.
    Kishor, S.
    XXX INTERNATIONAL HORTICULTURAL CONGRESS IHC2018: INTERNATIONAL SYMPOSIUM ON FRUIT AND VEGETABLES FOR PROCESSING, INTERNATIONAL SYMPOSIUM ON QUALITY AND SAFETY OF HORTICULTURAL PRODUCTS AND VII INTERNATIONAL SYMPOSIUM ON HUMAN HEALTH EFFECTS OF FRUIT, 2020, 1292 : 371 - 375
  • [22] INFLUENCE OF THE DIFFERENT RATE OF NITROGEN ON THE POSSIBILITIES FOR POST-HARVEST RIPENING OF THE CAPE GOOSEBERRY (PHYSALIS PERUVIANA L.) FRUITS
    Panayotov, Nikolay
    Popova, Ani
    SCIENTIFIC PAPERS-SERIES B-HORTICULTURE, 2015, 59 : 245 - 250
  • [23] Effects of auxin and gibberellin on pectic substances and their degrading enzymes in developing fruits of cape-gooseberry (Physalis peruviana L.)
    Majumder, K
    Mazumdar, BC
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2001, 76 (03): : 276 - 279
  • [24] Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes
    Fischer, G.
    Ebert, G.
    Luedders, P.
    JOURNAL OF APPLIED BOTANY AND FOOD QUALITY-ANGEWANDTE BOTANIK, 2007, 81 (01): : 29 - 35
  • [25] Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.)
    Olivares-Tenorio, Mary-Luz
    Verkerk, Ruud
    van Boekel, Martinus A. J. S.
    Dekker, Matthijs
    JOURNAL OF FUNCTIONAL FOODS, 2017, 32 : 46 - 57
  • [26] A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.)
    Salazar, M. R.
    Jones, J. W.
    Chaves, B.
    Cooman, A.
    SCIENTIA HORTICULTURAE, 2008, 115 (02) : 142 - 148
  • [27] Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.)
    Olivares-Tenorio, Mary-Luz
    Dekker, Matthijs
    van Boekel, Martinus A. J. S.
    Verkerk, Ruud
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2017, 80 : 523 - 530
  • [28] BASE TEMPERATURE AND SIMULATION MODEL FOR NODES APPEARANCE IN CAPE GOOSEBERRY (Physalis peruviana L.)
    Salazar, Melba Ruth
    Jones, James W.
    Chaves, Bernardo
    Cooman, Alexander
    Fischer, Gerhard
    REVISTA BRASILEIRA DE FRUTICULTURA, 2008, 30 (04) : 862 - 867
  • [29] Emission of volatile compounds during cape gooseberry (Physalis peruviana L.) fruit development
    Herrera, A.
    Ramirez, L.
    Espinal, M.
    Balaguera-Lopez, H.
    VII CONGRESO IBERICO DE AGROINGENIERIA Y CIENCIAS HORTICOLAS: INNOVAR Y PRODUCIR PARA EL FUTURO. INNOVATING AND PRODUCING FOR THE FUTURE, 2014, : 1546 - 1551
  • [30] A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (Physalis peruviana) fruits
    Garavito, Johanna
    Herrera, Anibal O.
    Castellanos, Diego A.
    BIOSYSTEMS ENGINEERING, 2021, 208 : 152 - 163